Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Phys Chem B ; 125(28): 7742-7749, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34232647

RESUMEN

The unmet demand for selective and remote detection of biological entities has urged nanobiotechnology to prioritize the innovation of biolabels that can be remotely detected. Magnetic nanowires (MNWs) have been deemed promising for remote detection as the magnetic fields can deeply and safely penetrate into tissue. However, the overlapping nature of the magnetic signatures has been a long-standing challenge for selective detection, which we resolve here. To do so, 13 types of MNWs with unique irreversible switching field (ISF) signatures were synthesized for labeling canine osteosarcoma (OSCA-8) cancer cells (one set) and polycarbonate biopolymers (12 sets). After characterizing the ISF signature of each MNW type, the MNW-labeled cancer cells were transferred onto MNW-labeled biopolymers to determine the most distinguishable ISF signatures and to discern the principles for reliable selective detection of biological entities. We show that tailoring the ISF of MNWs by tuning their coercivity is a highly effective approach for generating distinct magnetic biolabels for selective detection of cells. These findings smooth the path for the progression of nanobiotechnology by enabling the remote and selective detection of biological entities using MNWs.


Asunto(s)
Nanocables , Neoplasias , Animales , Perros , Campos Magnéticos , Magnetismo , Fenómenos Físicos
2.
J Phys D Appl Phys ; 54(13)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34092809

RESUMEN

Metal-oxide (MO) semiconductor gas sensors based on chemical resistivity necessarily involve making electrical contacts to the sensing materials. These contacts are imperfect and introduce errors into the measurements. In this paper, we demonstrate the feasibility of using contactless broadband dielectric spectroscopy (BDS)-based metrology in gas monitoring that avoids distortions in the reported resistivity values due to probe use, and parasitic errors (i.e. tool-measurand interactions). Specifically, we show how radio frequency propagation characteristics can be applied to study discrete processes on MO sensing material, such as zinc oxide (i.e. ZnO) surfaces, when exposed to a redox-active gas. Specifically, we have used BDS to investigate the initial oxidization of ZnO gas sensing material in air at temperatures below 200 °C, and to show that the technique affords new mechanistic insights that are inaccessible with the traditional resistance-based measurements.

3.
ACS Appl Mater Interfaces ; 13(18): 21060-21066, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33904709

RESUMEN

The main bottleneck for implementing magnetic nanowires (MNWs) in cell-biology research for multimodal therapeutics is the inapplicability of the current state of the art for selective detection and stimulation of MNWs. Here, we introduce a methodology for selective detection of MNWs in platforms that have multiple magnetic signals, such as future multimodal therapeutics. After characterizing the signatures of MNWs, MNWs were surface-functionalized and internalized into canine osteosarcoma (OSCA-8) cancer cells for cell labeling, manipulation, and separation. We also prepared and characterized magnetic biopolymers as multimodal platforms for future use in controlling the movement, growth, and division of cancer cells. First, it is important to have methods for distinguishing the magnetic signature of the biopolymer from the magnetically labeled cells. For this purpose, we use the projection method to selectively detect and demultiplex the magnetic signatures of MNWs inside cells from those inside magnetic biopolymers. We show that tailoring the irreversible switching field of MNWs by tuning their coercivity is a highly effective approach for generating distinct magnetic biolabels for selective detection of cancer cells. These findings open up new possibilities for selective stimulation of MNWs in multimodal therapeutic platforms for drug delivery, hyperthermia cancer therapy, and mitigating cancer cell movement and proliferation.


Asunto(s)
Magnetismo , Nanocables , Neoplasias/patología , Animales , Biopolímeros/química , Línea Celular Tumoral , Perros , Humanos , Masculino , Microscopía Electrónica de Rastreo
4.
Nanomaterials (Basel) ; 10(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854239

RESUMEN

Isolating and analyzing tumor-derived exosomes (TEX) can provide important information about the state of a tumor, facilitating early diagnosis and prognosis. Since current isolation methods are mostly laborious and expensive, we propose herein a fast and cost-effective method based on a magnetic nanoplatform to isolate TEX. In this work, we have tested our method using three magnetic nanostructures: (i) Ni magnetic nanowires (MNWs) (1500 × 40 nm), (ii) Fe3O4 nanorods (NRs) (41 × 7 nm), and (iii) Fe3O4 cube-octahedral magnetosomes (MGs) (45 nm) obtained from magnetotactic bacteria. The magnetic response of these nanostructures has been characterized, and we have followed their internalization inside canine osteosarcoma OSCA-8 cells. An overall depiction has been obtained using a combination of Fluorescence and Scanning Electron Microscopies. In addition, Transmission Electron Microscopy images have shown that the nanostructures, with different signs of degradation, ended up being incorporated in endosomal compartments inside the cells. Small intra-endosomal vesicles that could be precursors for TEX have also been identified. Finally, TEX have been isolated using our magnetic isolation method and analyzed with a Nanoparticle tracking analyzer (NanoSight). We observed that the amount and purity of TEX isolated magnetically with MNWs was higher than with NRs and MGs, and they were close to the results obtained using conventional non-magnetic isolation methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA