Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Genome Ed ; 6: 1403395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863835

RESUMEN

Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, in vivo testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells in vivo. The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP in vitro. In vivo transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.

2.
Stem Cell Res ; 77: 103438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776701

RESUMEN

Here we present the generation of a human embryonic stem cell line with the potential to escape immune rejection upon transplantation to an alternate species, in this case sus scrofa. For in vivo detection the cells were modified by CRISPR-Cas9 to express human secreted alkaline phosphatase. To avoid immune recognition and subsequent rejection by host, genes encoding hB2M and hCIITA were knocked out and the porcine gene for CD47 was introduced. Upon editing and subsequent culture, cells maintained molecular and phenotypic pluripotent charactaristics and a normal karyotype supporting viability and functionality of the engineered cell line.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas , Animales , Humanos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Porcinos , Línea Celular
3.
Front Genome Ed ; 2: 623717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34713244

RESUMEN

Neurological disorder is a general term used for diseases affecting the function of the brain and nervous system. Those include a broad range of diseases from developmental disorders (e.g., Autism) over injury related disorders (e.g., stroke and brain tumors) to age related neurodegeneration (e.g., Alzheimer's disease), affecting up to 1 billion people worldwide. For most of those disorders, no curative treatment exists leaving symptomatic treatment as the primary mean of alleviation. Human induced pluripotent stem cells (hiPSC) in combination with animal models have been instrumental to foster our understanding of underlying disease mechanisms in the brain. Of specific interest are patient derived hiPSC which allow for targeted gene editing in the cases of known mutations. Such personalized treatment would include (1) acquisition of primary cells from the patient, (2) reprogramming of those into hiPSC via non-integrative methods, (3) corrective intervention via CRISPR-Cas9 gene editing of mutations, (4) quality control to ensure successful correction and absence of off-target effects, and (5) subsequent transplantation of hiPSC or pre-differentiated precursor cells for cell replacement therapies. This would be the ideal scenario but it is time consuming and expensive. Therefore, it would be of great benefit if transplanted hiPSC could be modulated to become invisible to the recipient's immune system, avoiding graft rejection and allowing for allogenic transplantations. This review will focus on the current status of gene editing to generate non-immunogenic hiPSC and how these cells can be used to treat neurological disorders by using cell replacement therapy. By providing an overview of current limitations and challenges in stem cell replacement therapies and the treatment of neurological disorders, this review outlines how gene editing and non-immunogenic hiPSC can contribute and pave the road for new therapeutic advances. Finally, the combination of using non-immunogenic hiPSC and in vivo animal modeling will highlight the importance of models with translational value for safety efficacy testing; before embarking on human trials.

4.
CRISPR J ; 2(6): 362-369, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860350

RESUMEN

The current debate and policy surrounding the use of genome editing in humans typically relies on a binary distinction between therapy and human enhancement. Here, we argue that this dichotomy fails to take into account perhaps the most significant potential uses of CRISPR-Cas9 genome editing in humans. We argue that genetic treatment of sporadic Alzheimer's disease, breast and ovarian cancer predisposing BRCA1/2 mutations, and the introduction of human immunodeficiency virus resistance in humans should be considered within a new category of genetic protection treatments. We suggest that if this category is not introduced, life-altering research might be unnecessarily limited by current or future policy. Otherwise ad hoc decisions might be made, which introduce a risk of unforeseen moral costs, and might overlook or fail to address some important opportunities.


Asunto(s)
Edición Génica/ética , Prevención Primaria/ética , Prevención Primaria/métodos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Predisposición Genética a la Enfermedad/genética , Predisposición Genética a la Enfermedad/prevención & control , Terapia Genética/ética , Terapia Genética/métodos , Genoma Humano , Humanos , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA