Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 188: 48-58, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30529760

RESUMEN

Breast cancer is a complex disease, and approximately 30% of cases are considered to be hereditary or familial, with a large fraction of this being polygenic. However, it is difficult to demonstrate the functional importance of genes of small effect in population studies, and these genes are not always easily targeted for prevention. The SuprMam (suppressor of mammary tumour) breast cancer susceptibility alleles were previously identified as contributors to spontaneous mammary tumour development in Trp53+/- mice. In this study, we have generated and characterised congenic mice that contain the BALB/c SuprMam1 (susceptibility) locus on a C57BL/6 (resistant) background and discovered a subtle impairment in the vitamin D/ calcium/ parathyroid hormone (PTH) pathway. This was evident as altered gene expression in the mammary glands of key players in this pathway. Further functional analysis of the mice revealed elevated PTH levels, reduced Cyp27b1 expression in kidneys, and reduced trabecular bone volume/ tissue volume percentage. Plasma 25(OH)D and serum calcium were unchanged. This impairment was a result of genetic differences and occurred only in females, but the elevated PTH levels could be overcome with either calcium or vitamin D dietary supplementation. Either low levels of active vitamin D (1,25(OH)2D) or chronically elevated PTH levels may contribute to increased breast cancer susceptibility. These indicators are not easily measured in human population studies, but either mechanism may be preventable with dietary calcium or vitamin D supplements. Therefore, SuprMam congenic mice could serve as a valuable model for studying the role of gene-hormone-environment interactions of the vitamin D/ calcium/ PTH pathway in cancer and other diseases and for testing preventive interventions.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Calcio/metabolismo , Hormona Paratiroidea/metabolismo , Transducción de Señal , Vitamina D/metabolismo , Animales , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Calcio/sangre , Femenino , Sitios Genéticos , Predisposición Genética a la Enfermedad , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Hormona Paratiroidea/sangre , Vitamina D/sangre
2.
Genome Res ; 28(5): 625-638, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29650553

RESUMEN

The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.


Asunto(s)
Metilación de ADN , Epigenómica/métodos , Neoplasias de la Próstata/genética , Microambiente Tumoral/genética , Fibroblastos Asociados al Cáncer/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Humanos , Masculino , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/patología , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA