Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Sci ; 19(9): 2663-2677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324943

RESUMEN

As a peripheral nerve injury disease, cavernous nerve injury (CNI) caused by prostate cancer surgery and other pelvic surgery causes organic damage to cavernous blood vessels and nerves, thereby significantly attenuating the response to phosphodiesterase-5 inhibitors. Here, we investigated the role of heme-binding protein 1 (Hebp1) in erectile function using a mouse model of bilateral CNI, which is known to promote angiogenesis and improve erection in diabetic mice. We found a potent neurovascular regenerative effect of Hebp1 in CNI mice, demonstrating that exogenously delivered Hebp1 improved erectile function by promoting the survival of cavernous endothelial-mural cells and neurons. We further found that endogenous Hebp1 delivered by mouse cavernous pericyte (MCP)-derived extracellular vesicles promoted neurovascular regeneration in CNI mice. Moreover, Hebp1 achieved these effects by reducing vascular permeability through regulation of claudin family proteins. Our findings provide new insights into Hebp1 as a neurovascular regeneration factor and demonstrate its potential therapeutic application to various peripheral nerve injuries.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Vesículas Extracelulares , Traumatismos de los Nervios Periféricos , Animales , Humanos , Masculino , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Vesículas Extracelulares/metabolismo , Proteínas de Unión al Hemo/farmacología , Regeneración Nerviosa , Pene/irrigación sanguínea , Pene/inervación , Pene/cirugía , Pericitos/metabolismo , Traumatismos de los Nervios Periféricos/terapia
2.
Int Neurourol J ; 26(3): 201-209, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36203252

RESUMEN

PURPOSE: To assess functional and structural changes in vascular and neural structures associated with diabetic bladder dysfunction (DBD) in the bladders of streptozotocin (STZ)-induced diabetic mice. METHODS: Eight-week-old C57BL/6 mice were injected with STZ at 50 mg/kg daily for 5 consecutive days. Catheters were inserted 12 weeks later, and 5 days after catheter placement bladder functions were assessed by conscious cystometry. Neurovascular and extracellular matrix marker changes in harvested urinary bladders were investigated by immunofluorescent staining. Body weights and fasting and postprandial blood glucose levels were measured 12 weeks after STZ injection. RESULTS: STZ-induced diabetic mice had significantly lower body weights and significantly higher blood glucose levels. Assessment of bladder function in STZ-induced diabetic mice revealed a nearly 3-fold increase in bladder capacity and intercontractile interval compared to controls. However, basal pressure, maximal bladder pressure, and threshold pressure were not significantly different. Morphological and structural analysis showed that STZ-induced diabetic mice had significantly reduced microvascular density in lamina propria (33% of the nondiabetic control values), and severely decreased nerve contents in the detrusor region (42% of the nondiabetic control values). CONCLUSION: STZ-induced diabetic mice exhibit functional and structural derangements in urinary bladder. The present study provides a foundation and describes a useful means of evaluating the efficacies of therapeutic targets and exploring the detailed mechanism of DBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA