Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Radiat Environ Biophys ; 63(2): 181-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376815

RESUMEN

The necessity of precise dosimetry and its documentation in research is less obvious than in medicine and in radiological protection. However, in radiation research, results can only be validated if experiments were carried out with sufficient precision and described with sufficient details, especially information regarding dosimetry. In order to ensure this, an initiative was launched to establish reproducible dosimetry reporting parameters in published studies. Minimum standards for reporting radiation dosimetry information were developed and published in parallel in the International Journal of Radiation Biology and Radiation Research. As editors of Radiation and Environmental Biophysics, we support this initiative and reproduce the agreed minimum irradiation parameters that should be reported in publications on radiation biology submitted to our journal.


Asunto(s)
Radiometría , Radiometría/normas
4.
Med Phys ; 49(3): 1993-2013, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34426981

RESUMEN

Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.


Asunto(s)
Neoplasias , Oncología por Radiación , Protocolos Clínicos , Humanos , Neoplasias/radioterapia , Radiobiología , Dosificación Radioterapéutica
5.
Radiat Oncol ; 16(1): 159, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412654

RESUMEN

BACKGROUND: Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS: By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS: When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION: In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.


Asunto(s)
Neoplasias de la Mama/radioterapia , Fibroblastos/fisiología , Esferoides Celulares/efectos de la radiación , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Invasividad Neoplásica , Esferoides Celulares/patología
6.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299263

RESUMEN

BACKGROUND: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. MATERIAL AND METHODS: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). RESULTS: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. CONCLUSION: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , ADN/efectos de la radiación , Radioterapia de Iones Pesados/efectos adversos , Técnicas de Cultivo de Célula , Análisis por Conglomerados , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Eucromatina/genética , Eucromatina/efectos de la radiación , Fibroblastos , Radioterapia de Iones Pesados/métodos , Iones Pesados/efectos adversos , Heterocromatina/genética , Heterocromatina/efectos de la radiación , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/efectos de la radiación , Transferencia Lineal de Energía/efectos de la radiación , Microscopía Electrónica/métodos , Radiación Ionizante
7.
Front Oncol ; 11: 612354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816244

RESUMEN

Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.

8.
Int J Radiat Biol ; 96(3): 297-323, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31852363

RESUMEN

Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.


Asunto(s)
Neoplasias Inducidas por Radiación/diagnóstico , Radiación Ionizante , Transporte Activo de Núcleo Celular , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carbono/metabolismo , Ciclo Celular , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Humanos , Neoplasias/radioterapia , Estrés Oxidativo , Oxígeno/metabolismo , Traumatismos por Radiación , Protección Radiológica , Tolerancia a Radiación , Radioterapia , Procesos Estocásticos
9.
J Cell Sci ; 132(19)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31492757

RESUMEN

Nucleoli have attracted interest for their role as cellular stress sensors and as potential targets for cancer treatment. The effect of DNA double-strand breaks (DSBs) in nucleoli on rRNA transcription and nucleolar organisation appears to depend on the agent used to introduce DSBs, DSB frequency and the presence (or not) of DSBs outside the nucleoli. To address the controversy, we targeted nucleoli with carbon ions at the ion microbeam SNAKE. Localized ion irradiation with 1-100 carbon ions per point (about 0.3-30 Gy per nucleus) did not lead to overall reduced ribonucleotide incorporation in the targeted nucleolus or other nucleoli of the same cell. However, both 5-ethynyluridine incorporation and Parp1 protein levels were locally decreased at the damaged nucleolar chromatin regions marked by γH2AX, suggesting localized inhibition of rRNA transcription. This locally restricted transcriptional inhibition was not accompanied by nucleolar segregation, a structural reorganisation observed after inhibition of rRNA transcription by treatment with actinomycin D or UV irradiation. The presented data indicate that even multiple complex DSBs do not lead to a pan-nucleolar response if they affect only a subnucleolar region.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , ADN Ribosómico/genética , Humanos , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Transcripción Genética/genética
10.
Mutat Res ; 816-818: 111675, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31302572

RESUMEN

The accumulation and spatial distribution of 53BP1, BRCA1 and Rad51, key proteins in DNA double-strand break (DSB) repair, was investigated with high temporal resolution over a time span of 24 h, using STED nanoscopy. DNA lesions were induced by irradiation with high-LET (linear energy transfer) α-particles. We show that 53BP1 IRIF formation occurs quickly in almost all cells and after about 6 h the fraction of 53BP1 IRIF positive cells slowly declines. Against the expectations BRCA1 and Rad51 IRIF formation is only shortly delayed but with the maximum of cells showing foci after 6 and 8 h after irradiation. At this stage, almost all IRIF in a given Rad51-positive cell show Rad51 accumulation, suggesting that repair via homologous recombination is attempted at almost all residual DSB sites. The frequency of BRCA1 IRIF positive cells increases much earlier and remains high after Rad51 positive cells start to decline, supporting models claiming that functional roles of BRCA1 change over time. Correlation analysis showed a high degree of correlation of Rad51 with BRCA1, while the exclusion of 53BP1 from the actual resection-zone is demonstrated by anti-correlation of Rad51 and 53BP1. Interestingly, these correlation and anti-correlation patterns exhibit complementary temporal variation.


Asunto(s)
Proteína BRCA1/genética , Reparación del ADN/genética , ADN/genética , Recombinasa Rad51/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Células HeLa , Recombinación Homóloga/genética , Humanos
11.
Int J Radiat Biol ; 95(4): 452-479, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29932783

RESUMEN

PURPOSE: The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS: Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION: The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.


Asunto(s)
Dieta , Células Madre Hematopoyéticas/efectos de la radiación , Leucemia Inducida por Radiación/etiología , Animales , Antioxidantes , Autofagia , Diferenciación Celular , Epigénesis Genética , Microbioma Gastrointestinal , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
13.
Sci Rep ; 7: 40616, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094292

RESUMEN

The spatial distribution of DSB repair factors γH2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and γH2AX form IRIF with same mean size of (540 ± 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by γH2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 ± 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 ± 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Recombinasa Rad51/metabolismo , Radiación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Nanoestructuras
14.
Cancer Lett ; 386: 87-99, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867017

RESUMEN

Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/radioterapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Amplificación de Genes , Neoplasias de Cabeza y Cuello/radioterapia , Tolerancia a Radiación/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Supervivencia sin Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genotipo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Humanos , Estimación de Kaplan-Meier , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Tiempo , Transfección , Insuficiencia del Tratamiento , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
PLoS One ; 11(6): e0156599, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27253695

RESUMEN

Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Tolerancia a Radiación , Proteína 2 de Unión a Retinoblastoma/metabolismo , Acetilación , Proliferación Celular/efectos de la radiación , Cromatina/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Técnicas de Silenciamiento del Gen , Genes Reporteros , Células HeLa , Humanos , Lisina/metabolismo , Células MCF-7 , Plásmidos/metabolismo , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante
16.
Oncotarget ; 7(28): 43199-43219, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27259245

RESUMEN

The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Quimioradioterapia/métodos , Neoplasias Colorrectales/terapia , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Macrólidos/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Antineoplásicos/química , Apoptosis/efectos de la radiación , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Femenino , Células HCT116 , Hepatocitos , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Función Hepática , Macrólidos/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Fluorescente , Cultivo Primario de Células , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/química , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS One ; 11(3): e0151041, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950694

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.


Asunto(s)
Poli(ADP-Ribosa) Polimerasas/metabolismo , Anticuerpos de Dominio Único/inmunología , Resonancia por Plasmón de Superficie/métodos , Especificidad de Anticuerpos , Línea Celular , Supervivencia Celular , ADN/genética , ADN/metabolismo , Epítopos/inmunología , Humanos , Inmunoprecipitación , Imagen Molecular , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/inmunología , Estructura Terciaria de Proteína , Transporte de Proteínas
18.
Oncotarget ; 7(9): 9732-41, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26799421

RESUMEN

There is a need to develop new, more efficient therapies for head and neck cancer (HNSCC) patients. It is currently unclear whether defects in DNA repair genes play a role in HNSCCs' resistance to therapy. PARP1 inhibitors (PARPi) were found to be "synthetic lethal" in cancers deficient in BRCA1/2 with impaired homologous recombination. Since tumors rarely have these particular mutations, there is considerable interest in finding alternative determinants of PARPi sensitivity. Effectiveness of combined irradiation and PARPi olaparib was evaluated in ten HNSCC cell lines, subdivided into HR-proficient and HR-deficient cell lines using a GFP-based reporter assay. Both groups were equally sensitive to PARPi alone. Combined treatment revealed stronger synergistic interactions in the HR-deficient group. Because HR is mainly active in S-Phase, replication processes were analyzed. A stronger impact of treatment on replication processes (p = 0.04) and an increased number of radial chromosomes (p = 0.003) were observed in the HR-deficient group. We could show that radiosensitization by inhibition of PARP1 strongly correlates with HR competence in a replication-dependent manner. Our observations indicate that PARP1 inhibitors are promising candidates for enhancing the therapeutic ratio achieved by radiotherapy via disabling DNA replication processes in HR-deficient HNSCCs.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Replicación del ADN/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Recombinación Homóloga/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Reparación del ADN/genética , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello
19.
Phys Biol ; 12(6): 066005, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26595336

RESUMEN

Many proteins involved in detection, signalling and repair of DNA double-strand breaks (DSB) accumulate in large number in the vicinity of DSB sites, forming so called foci. Emerging evidence suggests that these foci are sub-divided in structural or functional domains. We use stimulated emission depletion (STED) microscopy to investigate localization of mediator protein 53BP1 and recombination factor Rad51 after irradiation of cells with low linear energy transfer (LET) protons or high LET carbon ions. With a resolution better than 100 nm, STED microscopy and image analysis using a newly developed analyzing algorithm, the reduced product of the differences from the mean, allowed us to demonstrate that with both irradiation types Rad51 occupies spherical regions of about 200 nm diameter. These foci locate within larger 53BP1 accumulations in regions of local 53BP1 depletion, similar to what has been described for the localization of Brca1, CtIP and RPA. Furthermore, localization relative to 53BP1 and size of Rad51 foci was not different after irradiation with low and high LET radiation. As expected, 53BP1 foci induced by low LET irradiation mostly contained one Rad51 focal structure, while after high LET irradiation, most foci contained >1 Rad51 accumulation.


Asunto(s)
Carbono/química , Roturas del ADN de Doble Cadena/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/química , Transferencia Lineal de Energía , Protones , Recombinasa Rad51/química , Proteínas de Ciclo Celular/química , Reparación del ADN , Células HeLa , Humanos , Iones/química , Proteína 1 de Unión al Supresor Tumoral P53
20.
Radiat Oncol ; 10: 42, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25880907

RESUMEN

Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.


Asunto(s)
Células/metabolismo , Células/efectos de la radiación , Imagen Molecular/instrumentación , Aceleradores de Partículas/instrumentación , Radiobiología/instrumentación , Humanos , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA