Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanoscale Res Lett ; 12(1): 284, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28431461

RESUMEN

PURPOSE: The voice is the most important instrument of communication. Tissue defects in the vocal fold (VF) area lead to serious reduction in quality of life, but thus far, no satisfactory VF implant exists. Therefore, we aim to establish a functional VF implant in a rabbit model by magnetic tissue engineering (MTE) using superparamagnetic iron oxide nanoparticles (SPION). Hence, iron quantification over time as well as cell behavior studies upon SPION treatment are of great importance. METHODS: Rabbit VF fibroblasts (VFF) were treated with different concentrations of SPIONs (20, 40, and 80 µg/cm2), and iron content was examined for up to 40 days using microwave plasma-atom emission spectroscopy. The effects of SPION treatment on VFF (adhesion, spreading, and migration), which are important for the formation of 3D structures, were tested. RESULTS: Cellular SPION quantification revealed that there was no residual iron remaining in VFFs after 40 days. SPIONs had a dose-dependent effect on cell adhesion, with good tolerability observed up to 20 µg/cm2. Migration and spreading were not significantly influenced by SPION treatment up to 80 µg/cm2. DISCUSSION AND CONCLUSION: To develop 3D structures, cell behavior should not be affected by SPION uptake. After 40 days, cells were free of iron as a result of metabolism or rarefication during cell division. Cell functions including adhesion, spreading, and migration were proven to be intact in a dose-dependent manner after SPION treatment, suggesting a safe usage of MTE for voice rehabilitation. Our results thus constitute a solid basis for a successful transfer of this technique into 3D constructs, in order to provide an individual and personalized human VF implant in the future.

2.
Anticancer Res ; 36(6): 3085-91, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27272832

RESUMEN

BACKGROUND/AIM: The voice is one of the most important instruments of communication between humans. It is the product of intact and well-working vocal folds. A defect of these structures causes dysphonia, associated with a clear reduction of quality of life. Tissue engineering of the vocal folds utilizing magnetic cell levitation after nanoparticle loading might be a technique to overcome this challenging problem. MATERIALS AND METHODS: Vocal fold fibroblasts (VFFs) were isolated from rabbit larynges and cultured. For magnetization, cells were incubated with superparamagnetic iron oxide nanoparticles (SPION) and the loading efficiency was determined by Prussian blue staining. Biocompatibility was analyzed in flow cytometry by staining with annexin V-fluorescein isothiocyanate propidium iodide, 1,1',3,3,3',3'-hexamethylindodicarbo-cyanine iodide [DiIC1(5)] and propidium idodide-Triton X-100 to monitor phosphatidylserine exposure, plasma membrane integrity, mitochondrial membrane potential and DNA degradation. RESULTS: Isolated VFFs can be successfully loaded with SPION, and optimal iron loading associated with minimized cytotoxicity represents a balancing act in magnetic tissue engineering. CONCLUSION: Our data are a firm basis for the next steps of investigations. Magnetic tissue engineering using magnetic nanoparticle-loaded cells which form three-dimensional structures in a magnetic field will be a promising approach in the future.


Asunto(s)
Compuestos Férricos , Nanopartículas de Magnetita , Ingeniería de Tejidos/métodos , Pliegues Vocales/citología , Trastornos de la Voz/rehabilitación , Animales , Células Cultivadas , Fibroblastos/fisiología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA