Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 122024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441122

RESUMEN

Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.


Asunto(s)
Gravitropismo , Proteínas Quinasas , Acilación , Transporte Biológico , Ácidos Indolacéticos
2.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513023

RESUMEN

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Conformación Proteica
3.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128538

RESUMEN

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Asunto(s)
Embryophyta , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Embryophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fosforilación , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/metabolismo
4.
New Phytol ; 240(2): 489-495, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37434303

RESUMEN

The 3',5'-cyclic adenosine monophosphate (cAMP) is a versatile second messenger in many mammalian signaling pathways. However, its role in plants remains not well-recognized. Recent discovery of adenylate cyclase (AC) activity for transport inhibitor response 1/auxin-signaling F-box proteins (TIR1/AFB) auxin receptors and the demonstration of its importance for canonical auxin signaling put plant cAMP research back into spotlight. This insight briefly summarizes the well-established cAMP signaling pathways in mammalian cells and describes the turbulent and controversial history of plant cAMP research highlighting the major progress and the unresolved points. We also briefly review the current paradigm of auxin signaling to provide a background for the discussion on the AC activity of TIR1/AFB auxin receptors and its potential role in transcriptional auxin signaling as well as impact of these discoveries on plant cAMP research in general.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Receptores de Superficie Celular/metabolismo , Sistemas de Mensajero Secundario , Proteínas F-Box/genética , AMP Cíclico/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
5.
Nature ; 611(7934): 133-138, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289340

RESUMEN

The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants.


Asunto(s)
Adenilil Ciclasas , Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácidos Indolacéticos , Receptores de Superficie Celular , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Mutación , Gravitropismo , Raíces de Plantas/crecimiento & desarrollo , AMP Cíclico/metabolismo , Sistemas de Mensajero Secundario
6.
Nature ; 609(7927): 575-581, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071161

RESUMEN

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corriente Citoplasmática , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Mutación , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(31): e2121058119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878023

RESUMEN

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Hormonas Peptídicas , Raíces de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hormonas Peptídicas/metabolismo , Fosfotransferasas , Raíces de Plantas/crecimiento & desarrollo
8.
Plant Cell ; 34(6): 2150-2173, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35218346

RESUMEN

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.


Asunto(s)
Arabidopsis , Vesículas Cubiertas por Clatrina , Arabidopsis/genética , Arabidopsis/metabolismo , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Proteoma/metabolismo , Proteómica , Factor de Transcripción AP-1/análisis , Factor de Transcripción AP-1/metabolismo
9.
Nature ; 599(7884): 273-277, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707283

RESUMEN

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Transducción de Señal , Álcalis , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Activación Enzimática , Proteínas F-Box/metabolismo , Concentración de Iones de Hidrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
10.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359847

RESUMEN

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hormonas Peptídicas/genética , Fosfoproteínas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ácidos Indolacéticos/farmacología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ácidos Naftalenoacéticos/síntesis química , Ácidos Naftalenoacéticos/farmacología , Hormonas Peptídicas/metabolismo , Fosfoproteínas/clasificación , Fosfoproteínas/metabolismo , Fosforilación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
11.
Plant Cell ; 33(7): 2431-2453, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33944955

RESUMEN

Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443187

RESUMEN

N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.


Asunto(s)
Transporte Biológico Activo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ftalimidas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Activo/genética , Dimerización , Espectrometría de Masas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Fosforilación , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Xenopus
13.
Proc Natl Acad Sci U S A ; 117(26): 15322-15331, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541049

RESUMEN

Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Células Vegetales/fisiología , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/antagonistas & inhibidores , Quinurenina/farmacología , Rayos Láser , Ftalimidas/farmacología , Células Vegetales/efectos de los fármacos , Regeneración/efectos de los fármacos , Regeneración/fisiología , Transducción de Señal/fisiología , Triazoles/farmacología
14.
Mol Cell Proteomics ; 19(8): 1248-1262, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32404488

RESUMEN

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Péptidos/metabolismo , Proteómica , Estrés Fisiológico , Adaptación Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Transcripción Genética
15.
Plant Cell ; 32(5): 1644-1664, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193204

RESUMEN

Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Epistasis Genética/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Nicotiana/metabolismo , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(39): 11028-33, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27651494

RESUMEN

The Arabidopsis thaliana endogenous elicitor peptides (AtPeps) are released into the apoplast after cellular damage caused by pathogens or wounding to induce innate immunity by direct binding to the membrane-localized leucine-rich repeat receptor kinases, PEP RECEPTOR1 (PEPR1) and PEPR2. Although the PEPR-mediated signaling components and responses have been studied extensively, the contributions of the subcellular localization and dynamics of the active PEPRs remain largely unknown. We used live-cell imaging of the fluorescently labeled and bioactive pep1 to visualize the intracellular behavior of the PEPRs in the Arabidopsis root meristem. We found that AtPep1 decorated the plasma membrane (PM) in a receptor-dependent manner and cointernalized with PEPRs. Trafficking of the AtPep1-PEPR1 complexes to the vacuole required neither the trans-Golgi network/early endosome (TGN/EE)-localized vacuolar H(+)-ATPase activity nor the function of the brefeldin A-sensitive ADP-ribosylation factor-guanine exchange factors (ARF-GEFs). In addition, AtPep1 and different TGN/EE markers colocalized only rarely, implying that the intracellular route of this receptor-ligand pair is largely independent of the TGN/EE. Inducible overexpression of the Arabidopsis clathrin coat disassembly factor, Auxilin2, which inhibits clathrin-mediated endocytosis (CME), impaired the AtPep1-PEPR1 internalization and compromised AtPep1-mediated responses. Our results show that clathrin function at the PM is required to induce plant defense responses, likely through CME of cell surface-located signaling components.


Asunto(s)
Arabidopsis/metabolismo , Clatrina/metabolismo , Péptidos/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Meristema/citología , Meristema/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Rodaminas/metabolismo , Fracciones Subcelulares/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Red trans-Golgi/metabolismo
17.
Elife ; 52016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27627746

RESUMEN

Despite being composed of immobile cells, plants reorient along directional stimuli. The hormone auxin is redistributed in stimulated organs leading to differential growth and bending. Auxin application triggers rapid cell wall acidification and elongation of aerial organs of plants, but the molecular players mediating these effects are still controversial. Here we use genetically-encoded pH and auxin signaling sensors, pharmacological and genetic manipulations available for Arabidopsis etiolated hypocotyls to clarify how auxin is perceived and the downstream growth executed. We show that auxin-induced acidification occurs by local activation of H+-ATPases, which in the context of gravity response is restricted to the lower organ side. This auxin-stimulated acidification and growth require TIR1/AFB-Aux/IAA nuclear auxin perception. In addition, auxin-induced gene transcription and specifically SAUR proteins are crucial downstream mediators of this growth. Our study provides strong experimental support for the acid growth theory and clarified the contribution of the upstream auxin perception mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Proteínas F-Box/metabolismo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Receptores de Superficie Celular/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Activación Enzimática , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , ATPasas de Translocación de Protón/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos
18.
Nat Commun ; 7: 11710, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271794

RESUMEN

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Asunto(s)
Ácidos/metabolismo , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Mitocondrias/metabolismo , Desacopladores/farmacología , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efectos de los fármacos , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología
19.
Plant Physiol ; 168(1): 132-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792253

RESUMEN

Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca(2+) influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Mecánico , Sinaptotagmina I/metabolismo , Proteínas de Arabidopsis/química , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Microtúbulos/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Sinaptotagmina I/química
20.
Development ; 142(4): 712-21, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25617431

RESUMEN

Cyclophilin A is a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation.


Asunto(s)
Ciclofilina A/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte Biológico , Ciclofilina A/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Brotes de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA