Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319311

RESUMEN

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Antituberculosos , Moxifloxacino/uso terapéutico , Tuberculosis/tratamiento farmacológico
2.
J Infect Dis ; 227(4): 592-601, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36611221

RESUMEN

Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Tuberculosis Latente/diagnóstico por imagen , Tuberculosis Latente/microbiología , Pulmón/patología , Macaca
3.
Cell Rep ; 39(7): 110826, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584684

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a global health concern, yearly resulting in 10 million new cases of active TB. Immunologic investigation of lung granulomas is essential for understanding host control of bacterial replication. Here, we identify and compare the pathological, cellular, and functional differences in granulomas at 4, 12, and 20 weeks post-infection in Chinese cynomolgus macaques. Original granulomas differ in transcription-factor expression within adaptive lymphocytes, with those at 12 weeks showing higher frequencies of CD8+T-bet+ T cells, while CD4+T-bet+ T cells increase at 20 weeks post-infection. The appearance of T-bet+ adaptive T cells at 12 and 20 weeks is coincident with a reduction in bacterial burden, suggesting their critical role in Mtb control. This study highlights the evolution of T cell responses within lung granulomas, suggesting that vaccines promoting the development and migration of T-bet+ T cells would enhance mycobacterial control.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Linfocitos T CD4-Positivos , Granuloma/patología , Macaca fascicularis , Linfocitos T , Factores de Transcripción TCF
4.
ACS Infect Dis ; 7(8): 2264-2276, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34255474

RESUMEN

Neutrophilic inflammation correlates with severe tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb). Granulomas are lesions that form in TB, and a PET probe for following neutrophil recruitment to granulomas could predict disease progression. We tested the formyl peptide receptor 1 (FPR1)-targeting peptide FLFLF in Mtb-infected macaques. Preliminary studies in mice demonstrated specificity for neutrophils. In macaques, 64Cu-FLFLF was retained in lung granulomas and analysis of lung granulomas identified positive correlations between 64Cu-FLFLF and neutrophil and macrophage numbers (R2 = 0.8681 and 0.7643, respectively), and weaker correlations for T cells and B cells (R2 = 0.5744 and 0.5908, respectively), suggesting that multiple cell types drive 64Cu-FLFLF avidity. By PET/CT imaging, we found that granulomas retained 64Cu-FLFLF but with less avidity than the glucose analog 18F-FDG. These studies suggest that neutrophil-specific probes have potential PET/CT applications in TB, but important issues need to be addressed before they can be used in nonhuman primates and humans.


Asunto(s)
Neutrófilos , Receptores de Formil Péptido , Animales , Granuloma/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Macaca fascicularis , Macrófagos , Tomografía Computarizada por Tomografía de Emisión de Positrones
5.
J Vis Exp ; (127)2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28930979

RESUMEN

Mycobacterium tuberculosis remains the number one infectious agent in the world today. With the emergence of antibiotic resistant strains, new clinically relevant methods are needed that evaluate the disease process and screen for potential antibiotic and vaccine treatments. Positron Emission Tomography/Computed Tomography (PET/CT) has been established as a valuable tool for studying a number of afflictions such as cancer, Alzheimer's disease, and inflammation/infection. Outlined here are a number of strategies that have been employed to evaluate PET/CT images in cynomolgus macaques that are infected intrabronchially with low doses of M. tuberculosis. Through evaluation of lesion size on CT and uptake of 18F-fluorodeoxyglucose (FDG) in lesions and lymph nodes in PET images, these described methods show that PET/CT imaging can predict future development of active versus latent disease and the propensity for reactivation from a latent state of infection. Additionally, by analyzing the overall level of lung inflammation, these methods determine antibiotic efficacy of drugs against M. tuberculosis in the most clinically relevant existing animal model. These image analysis methods are some of the most powerful tools in the arsenal against this disease as not only can they evaluate a number of characteristics of infection and drug treatment, but they are also directly translatable to a clinical setting for use in human studies.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tuberculosis/diagnóstico por imagen , Animales , Macaca , Mycobacterium tuberculosis/aislamiento & purificación , Primates , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología
6.
PLoS Pathog ; 12(7): e1005739, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27379816

RESUMEN

Mycobacterium tuberculosis infection presents across a spectrum in humans, from latent infection to active tuberculosis. Among those with latent tuberculosis, it is now recognized that there is also a spectrum of infection and this likely contributes to the variable risk of reactivation tuberculosis. Here, functional imaging with 18F-fluorodeoxygluose positron emission tomography and computed tomography (PET CT) of cynomolgus macaques with latent M. tuberculosis infection was used to characterize the features of reactivation after tumor necrosis factor (TNF) neutralization and determine which imaging characteristics before TNF neutralization distinguish reactivation risk. PET CT was performed on latently infected macaques (n = 26) before and during the course of TNF neutralization and a separate set of latently infected controls (n = 25). Reactivation occurred in 50% of the latently infected animals receiving TNF neutralizing antibody defined as development of at least one new granuloma in adjacent or distant locations including extrapulmonary sites. Increased lung inflammation measured by PET and the presence of extrapulmonary involvement before TNF neutralization predicted reactivation with 92% sensitivity and specificity. To define the biologic features associated with risk of reactivation, we used these PET CT parameters to identify latently infected animals at high risk for reactivation. High risk animals had higher cumulative lung bacterial burden and higher maximum lesional bacterial burdens, and more T cells producing IL-2, IL-10 and IL-17 in lung granulomas as compared to low risk macaques. In total, these data support that risk of reactivation is associated with lung inflammation and higher bacterial burden in macaques with latent Mtb infection.


Asunto(s)
Tuberculosis Latente/diagnóstico por imagen , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Activación Viral , Latencia del Virus , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Procesamiento de Imagen Asistido por Computador , Macaca fascicularis , Mycobacterium tuberculosis , Reacción en Cadena de la Polimerasa , Tomografía Computarizada por Tomografía de Emisión de Positrones
7.
Antimicrob Agents Chemother ; 57(9): 4237-4244, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23796926

RESUMEN

Trials to test new drugs currently in development against tuberculosis in humans are impractical. All animal models to prioritize new regimens are imperfect, but nonhuman primates (NHPs) infected with Mycobacterium tuberculosis develop active tuberculosis (TB) disease with a full spectrum of lesion types seen in humans. Serial 2-deoxy-2-[18F]-fluoro-d-glucose (FDG) positron emission tomography (PET) with computed tomography (CT) imaging was performed on cynomolgus macaques during infection and chemotherapy with individual agents or the four-drug combination therapy most widely used globally. The size and metabolic activity of lung granulomas varied among animals and even within a single animal during development of disease. Individual granulomas within untreated animals had highly local and independent outcomes, some progressing in size and FDG uptake, while others waned, illustrating the highly dynamic nature of active TB. At necropsy, even untreated animals were found to have a proportion of sterile lesions consistent with the dynamics of this infection. A more marked reduction in overall metabolic activity in the lungs (decreased FDG uptake) was associated with effective treatment. A reduction in the size of individual lesions correlated with a lower bacterial burden at necropsy. Isoniazid treatment was associated with a transient increase in metabolic activity in individual lesions, whereas a net reduction occurred in most lesions from rifampin-treated animals. Quadruple-drug therapy resulted in the highest decrease in FDG uptake. The findings of PET-CT imaging may provide an important early correlate of the efficacy of novel combinations of new drugs that can be directly translated to human clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA