Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochem Soc Trans ; 52(1): 99-110, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38288744

RESUMEN

Mitochondria are the powerhouse of the cell. They undergo fission and fusion to maintain cellular homeostasis. In this review, we explore the intricate regulation of mitochondrial fission at various levels, including the protein level, the post-translational modification level, and the organelle level. Malfunctions in mitochondrial fission can have detrimental effects on cells. Therefore, we also examine the association between mitochondrial fission with diseases such as breast cancer and cardiovascular disorders. We anticipate that a comprehensive investigation into the control of mitochondrial fission will pave the way for the development of innovative therapeutic strategies.


Asunto(s)
Enfermedades Cardiovasculares , Dinámicas Mitocondriales , Humanos , Dinámicas Mitocondriales/fisiología , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedades Cardiovasculares/metabolismo , Proteínas Mitocondriales/metabolismo
2.
PLoS Biol ; 21(8): e3002247, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37590302

RESUMEN

Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.


Asunto(s)
Demencia Frontotemporal , Schizosaccharomyces , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , Dinámicas Mitocondriales , Adenosina Trifosfatasas , Mitocondrias , Schizosaccharomyces/genética
4.
Nat Commun ; 13(1): 5565, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138017

RESUMEN

Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
EBioMedicine ; 75: 103790, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34974310

RESUMEN

BACKGROUND: Oogenesis is a fundamental process of human reproduction, and mitochondria play crucial roles in oocyte competence. Mitochondrial ATP-dependent Lon protease 1 (LONP1) functions as a critical protein in maintaining mitochondrial and cellular homeostasis in somatic cells. However, the essential role of LONP1 in maintaining mammalian oogenesis is far from elucidated. METHODS: Using conditional oocyte Lonp1-knockout mice, RNA sequencing (RNA-seq) and coimmunoprecipitation/liquid chromatography-mass spectrometry (Co-IP/LC-MS) technology, we analysed the functions of LONP1 in mammalian oogenesis. FINDINGS: Conditional knockout of Lonp1 in mouse oocytes in both the primordial and growing follicle stages impairs follicular development and causes progressive oocyte death, ovarian reserve loss, and infertility. LONP1 directly interacts with apoptosis inducing factor mitochondria-associated 1 (AIFM1), and LONP1 ablation leads to the translocation of AIFM1 from the cytoplasm to the nucleus, causing apoptosis in mouse oocytes. In addition, women with pathogenic variants of LONP1 lack large antral follicles (>10 mm) in the ovaries, are infertile and present premature ovarian insufficiency. INTERPRETATION: We demonstrated the function of LONP1 in regulating oocyte development and survival, and in-depth analysis of LONP1 will be crucial for elucidating the mechanisms underlying premature ovarian insufficiency. FUNDING: This work was supported by grants from the National Key Research and Development Program of China (2018YFC1004701), the National Nature Science Foundation of China (82001629, 81871128, 81571391, 81401166, 82030040), the Jiangsu Province Social Development Project (BE2018602), the Jiangsu Provincial Medical Youth Talent (QNRC2016006), the Youth Program of the Natural Science Foundation of Jiangsu Province (BK20200116) and Jiangsu Province Postdoctoral Research Funding (2021K277B).


Asunto(s)
Proteasa La , Proteasas ATP-Dependientes/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Mamíferos/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oocitos , Oogénesis/genética , Péptido Hidrolasas/metabolismo , Proteasa La/metabolismo
6.
J Mol Cell Biol ; 13(6): 395-408, 2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34143183

RESUMEN

Cell polarity is essential for spatially regulating of physiological processes in metazoans by which hormonal stimulation‒secretion coupling is precisely coupled for tissue homeostasis and organ communications. However, the molecular mechanisms underlying epithelial cell polarity establishment remain elusive. Here, we show that septin cytoskeleton interacts with catenin complex to organize a functional domain to separate apical from basal membranes in polarized epithelial cells. Using polarized epithelial cell monolayer as a model system with transepithelial electrical resistance as functional readout, our studies show that septins are essential for epithelial cell polarization. Our proteomic analyses discovered a novel septin‒catenin complex during epithelial cell polarization. The functional relevance of septin‒catenin complex was then examined in three-dimensional (3D) culture in which suppression of septins resulted in deformation of apical lumen in cysts, a hallmark seen in polarity-deficient 3D cultures and animals. Mechanistically, septin cytoskeleton stabilizes the association of adherens catenin complex with actin cytoskeleton, and depletion or disruption of septin cytoskeleton liberates adherens junction and polarity complexes into the cytoplasm. Together, these findings reveal a previously unrecognized role for septin cytoskeleton in the polarization of the apical‒basal axis and lumen formation in polarized epithelial cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cateninas/metabolismo , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Septinas/metabolismo , Citoesqueleto de Actina/fisiología , Células CACO-2 , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células Epiteliales/fisiología , Humanos , Morfogénesis/fisiología , Proteómica/métodos
7.
J Mol Cell Biol ; 12(8): 654-665, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31174204

RESUMEN

Error-free cell division depends on the accurate assembly of the spindle midzone from dynamic spindle microtubules to ensure chromatid segregation during metaphase-anaphase transition. However, the mechanism underlying the key transition from the mitotic spindle to central spindle before anaphase onset remains elusive. Given the prevalence of chromosome instability phenotype in gastric tumorigenesis, we developed a strategy to model context-dependent cell division using a combination of light sheet microscope and 3D gastric organoids. Light sheet microscopic image analyses of 3D organoids showed that CENP-E inhibited cells undergoing aberrant metaphase-anaphase transition and exhibiting chromosome segregation errors during mitosis. High-resolution real-time imaging analyses of 2D cell culture revealed that CENP-E inhibited cells undergoing central spindle splitting and chromosome instability phenotype. Using biotinylated syntelin as an affinity matrix, we found that CENP-E forms a complex with PRC1 in mitotic cells. Chemical inhibition of CENP-E in metaphase by syntelin prevented accurate central spindle assembly by perturbing temporal assembly of PRC1 to the midzone. Thus, CENP-E-mediated PRC1 assembly to the central spindle constitutes a temporal switch to organize dynamic kinetochore microtubules into stable midzone arrays. These findings reveal a previously uncharacterized role of CENP-E in temporal control of central spindle assembly. Since CENP-E is absent from yeast, we reasoned that metazoans evolved an elaborate central spindle organization machinery to ensure accurate sister chromatid segregation during anaphase and cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Huso Acromático/metabolismo , Anafase , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Organoides/metabolismo , Huso Acromático/ultraestructura , Estómago/citología , Factores de Tiempo
8.
J Biol Chem ; 294(47): 17725-17734, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31562247

RESUMEN

Mitochondria undergo morphological and dynamic changes in response to environmental stresses. Few studies have focused on addressing mitochondrial remodeling under stress. Using the fission yeast Schizosaccharomyces pombe as a model organism, here we investigated mitochondrial remodeling under glucose starvation. We employed live-cell microscopy to monitor mitochondrial morphology and dynamics of cells in profusion chambers under glucose starvation. Our results revealed that mitochondria fragment within minutes after glucose starvation and that the dynamin GTPase Dnm1 is required for promoting mitochondrial fragmentation. Moreover, we found that glucose starvation enhances Dnm1 localization to mitochondria and increases the frequency of mitochondrial fission but decreases PKA activity. We further demonstrate that low PKA activity enhances glucose starvation-induced mitochondrial fragmentation, whereas high PKA activity confers resistance to glucose starvation-induced mitochondrial fragmentation. Moreover, we observed that AMP-activated protein kinase is not involved in regulating mitochondrial fragmentation under glucose starvation. Of note, glucose starvation-induced mitochondrial fragmentation was associated with enhanced reactive oxygen species production. Our work provides detailed mechanistic insights into mitochondrial remodeling in response to glucose starvation.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucosa/deficiencia , Dinámicas Mitocondriales , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adenilato Quinasa/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Mol Biol Cell ; 25(24): 3900-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25253718

RESUMEN

Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms, such as the spindle assembly checkpoint and centromere positioning, further help to ensure complete segregation fidelity. Here we present the fission yeast csi2+. csi2p localizes to the spindle poles, where it regulates mitotic microtubule dynamics, bipolar spindle formation, and subsequent chromosome segregation. csi2 deletion (csi2Δ) results in abnormally long mitotic microtubules, high rate of transient monopolar spindles, and subsequent high rate of chromosome segregation defects. Because csi2Δ has multiple phenotypes, it enables estimates of the relative contribution of the different mechanisms to the overall chromosome segregation process. Centromere positioning, microtubule dynamics, and bipolar spindle formation can all contribute to chromosome segregation. However, the major determinant of chromosome segregation defects in fission yeast may be microtubule dynamic defects.


Asunto(s)
Segregación Cromosómica , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Centrómero/metabolismo , Cinética , Cinetocoros/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático/genética , Imagen de Lapso de Tiempo
10.
J Biol Chem ; 289(20): 14145-56, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24692559

RESUMEN

The telomere capping protein TRF1 is a component of the multiprotein complex "shelterin," which organizes the telomere into a high order structure. Besides telomere maintenance, telomere-associated proteins also have nontelomeric functions. For example, tankyrase 1 and TRF1 are required for the maintenance of faithful mitotic progression. However, the functional relevance of their centrosomal localization has not been established. Here, we report the identification of a TRF1-binding protein, TAP68, that interacts with TRF1 in mitotic cells. TAP68 contains two coiled-coil domains and a structural maintenance of chromosome motifs and co-localizes with TRF1 to telomeres during interphase. Immediately after nuclear envelope breakdown, TAP68 translocates toward the spindle poles followed by TRF1. Dissociation of TAP68 from the telomere is concurrent with the Nek2A-dependent phosphorylation at Thr-221. Biochemical characterization demonstrated that the first coiled-coil domain of TAP68 binds and recruits TRF1 to the centrosome. Inhibition of TAP68 expression by siRNA blocked the localization of TRF1 and tankyrase 1 to the centrosome. Furthermore, siRNA-mediated depletion of TAP68 perturbed faithful chromosome segregation and genomic stability. These findings suggest that TAP68 functions in mediating TRF1-tankyrase 1 localization to the centrosome and in mitotic regulation.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Mitosis , Polos del Huso/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Células HeLa , Humanos , Interfase , Proteínas de Microfilamentos/química , Datos de Secuencia Molecular , Quinasas Relacionadas con NIMA , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Telómero/metabolismo , Quinasa Tipo Polo 1
11.
J Biol Chem ; 286(4): 3033-46, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21078677

RESUMEN

During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromosomas Humanos/genética , Inestabilidad Genómica , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Huso Acromático/genética , Quinasa Tipo Polo 1
12.
Oncogene ; 24(35): 5401-13, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-15940266

RESUMEN

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells, resulting from a reciprocal chromosome translocation t (15;17). Here we show that the nuclear localization of PML is also regulated by SUMO-3, one of the three recently identified SUMO isoforms in human cells. SUMO-3 bears similar subcellular distribution to those of SUMO-1 and -2 in the interphase nuclear body, which is colocalized with PML protein. However, both SUMO-2 and -3 are also localized to nucleoli, a region lacking SUMO-1. Immunoprecipitated PML protein bears SUMO-3 moiety in a covalently modified form, supporting the notion that PML is conjugated by SUMO-3. To determine the functional relevance of SUMO-3 conjugation on PML molecular dynamics, we suppressed SUMO-3 protein expression using a siRNA-mediated approach. Depletion of SUMO-3 markedly reduced the number of PML-containing NBa and their integrity, which is rescued by exogenous expression of SUMO-3 but not SUMO-1 or SUMO-2. The specific requirement of SUMO-3 for PML nuclear localization is validated by expression of SUMO-3 conjugation defective mutant. Moreover, we demonstrate that oligomerization of SUMO-3 is required for PML retention in the nucleus. Taken together, our studies provide first line of evidence showing that SUMO-3 is essential for PML localization and offer novel insight into the pathobiochemistry of APL.


Asunto(s)
Núcleo Celular/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Western Blotting , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Inmunoprecipitación , Cuerpos de Inclusión Intranucleares/química , Leucemia Promielocítica Aguda/metabolismo , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/química , Proteínas Nucleares/química , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Factores de Transcripción/química , Proteínas Supresoras de Tumor/química
13.
Am J Physiol Cell Physiol ; 285(3): C662-73, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12724136

RESUMEN

Nonmuscle myosin II has been shown to participate in organizing the actin cytoskeleton in polarized epithelial cells. Vectorial acid secretion in cultured parietal cells involves translocation of proton pumps from cytoplasmic vesicular membranes to the apical plasma membrane vacuole with coordinated lamellipodial dynamics at the basolateral membrane. Here we identify nonmuscle myosin II in rabbit gastric parietal cells. Western blots with isoform-specific antibodies indicate that myosin IIA is present in both cytosolic and particulate membrane fractions whereas the IIB isoform is associated only with particulate fractions. Immunofluorescent staining demonstrates that myosin IIA is diffusely located throughout the cytoplasm of resting parietal cells. However, after stimulation, myosin IIA is rapidly redistributed to lamellipodial extensions at the cell periphery; virtually all the cytoplasmic myosin IIA joins the newly formed basolateral membrane extensions. 2,3-Butanedione monoximine (BDM), a myosin-ATPase inhibitor, greatly diminishes the lamellipodial dynamics elicited by stimulation and retains the pattern of myosin IIA cytoplasmic staining. However, BDM had no apparent effect on the stimulation associated redistribution of H,K-ATPase from a cytoplasmic membrane compartment to apical membrane vacuoles. The myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7) also did not alter the stimulation-associated recruitment of H,K-ATPase to apical membrane vacuoles, but unlike BDM it had relatively minor inhibitory effects on lamellipodial dynamics. We conclude that specific disruption of the basolateral actomyosin cytoskeleton has no demonstrable effect on recruitment of H,K-ATPase-rich vesicles into the apical secretory membrane. However, myosin II plays an important role in regulating lamellipodial dynamics and cortical actomyosin associated with parietal cell activation.


Asunto(s)
Diacetil/análogos & derivados , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Células Parietales Gástricas/citología , Células Parietales Gástricas/metabolismo , Seudópodos/metabolismo , Aminopirina/farmacocinética , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Células Cultivadas , Reactivadores de la Colinesterasa/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Citoesqueleto/fisiología , Diacetil/farmacología , Ácido Gástrico/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA