Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915662

RESUMEN

The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as acceptor. We have optimized the assay into 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.

2.
iScience ; 27(6): 110035, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883827

RESUMEN

Genomic alterations, such as missense mutations, often lead to the activation of oncogenic pathways and cell transformation by rewiring protein-protein interaction (PPI) networks. Understanding how mutant-directed neomorph PPIs (neoPPIs) drive cancer is vital to developing new personalized clinical strategies. However, the experimental interrogation of neoPPI functions in patients with cancer is highly challenging. To address this challenge, we developed a computational platform, termed AVERON for discovering actionable vulnerabilities enabled by rewired oncogenic networks. AVERON enables rapid systematic profiling of the clinical significance of neomorph PPIs across different cancer types, informing molecular mechanisms of neoPPI-driven tumorigenesis, and revealing therapeutically actionable neoPPI-regulated genes. We demonstrated the application of the AVERON platform by evaluating the biological functions and clinical significance of 130 neomorph interactions, experimentally determined for oncogenic BRAFV600E. The AVERON application to broad sets of mutant-directed PPIs may inform new testable biological models and clinical strategies in cancer.

3.
iScience ; 27(4): 109591, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38632988

RESUMEN

Targeting cancer metabolism to limit cellular energy and metabolite production is an attractive therapeutic approach. Here, we developed analogs of the bisbiguanide, alexidine, to target lung cancer cell metabolism and assess a structure-activity relationship (SAR). The SAR led to the identification of two analogs, AX-4 and AX-7, that limit cell growth via G1/G0 cell-cycle arrest and are tolerated in vivo with favorable pharmacokinetics. Mechanistic evaluation revealed that AX-4 and AX-7 induce potent mitochondrial defects; mitochondrial cristae were deformed and the mitochondrial membrane potential was depolarized. Additionally, cell metabolism was rewired, as indicated by reduced oxygen consumption and mitochondrial ATP production, with an increase in extracellular lactate. Importantly, AX-4 and AX-7 impacted overall cell behavior, as these compounds reduced collective cell invasion. Taken together, our study establishes a class of bisbiguanides as effective mitochondria and cell invasion disrupters, and proposes bisbiguanides as promising approaches to limiting cancer metastasis.

4.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530357

RESUMEN

Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.


Asunto(s)
5'-Nucleotidasa , Proteolisis , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ubiquitinación , Proteasas Ubiquitina-Específicas
5.
J Mol Cell Biol ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968137

RESUMEN

The transforming growth factor-beta (TGFß) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

6.
ACS Med Chem Lett ; 14(10): 1338-1343, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849531

RESUMEN

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.

7.
Pharm Res ; 40(9): 2133-2146, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704893

RESUMEN

PURPOSE: Although high-dose, multiagent chemotherapy has improved leukemia survival rates, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. The development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. METHODS: The dual MERTK/FLT3 inhibitor MRX-2843 and BCL-2 family protein inhibitors were screened in high-throughput against a panel of AML and MLL-rearranged precursor B-cell ALL (infant ALL) cell lines. A neural network model was built to correlate ratiometric drug synergy and target gene expression. Drugs were loaded into liposomal nanocarriers to assess primary AML cell responses. RESULTS: MRX-2843 synergized with venetoclax to reduce AML cell density in vitro. A neural network classifier based on drug exposure and target gene expression predicted drug synergy and growth inhibition in AML with high accuracy. Combination monovalent liposomal drug formulations delivered defined drug ratios intracellularly and recapitulated synergistic drug activity. The magnitude and frequency of synergistic responses were both maintained and improved following drug formulation in a genotypically diverse set of primary AML bone marrow specimens. CONCLUSIONS: We developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and infant ALL cells. We demonstrate ratiometric drug delivery and synergistic cell killing in AML, a result achieved by a systematic, generalizable approach of combination drug screening and nanoscale formulation that may be extended to other drug pairs or diseases in the future.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-bcl-2 , Niño , Lactante , Humanos , Tirosina Quinasa c-Mer , Composición de Medicamentos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Apoptosis , Tirosina Quinasa 3 Similar a fms/farmacología , Tirosina Quinasa 3 Similar a fms/uso terapéutico
8.
J Control Release ; 361: 470-482, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543290

RESUMEN

Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion. Based on these findings, we developed multiagent lipid nanoparticle formulations of these drugs that not only delivered defined drug ratios intracellularly in T-ALL, but also improved anti-leukemia activity following drug encapsulation. Synergistic and additive interactions were recapitulated in primary T-ALL patient samples treated with MRX-2843 and vincristine nanoparticle formulations, suggesting their clinical relevance. Moreover, the nanoparticle formulations reduced disease burden and prolonged survival in an orthotopic murine xenograft model of early thymic precursor T-ALL (ETP-ALL), with both agents contributing to therapeutic activity in a dose-dependent manner. In contrast, nanoparticles containing MRX-2843 alone were ineffective in this model. Thus, MRX-2843 increased the sensitivity of ETP-ALL cells to vincristine in vivo. In this context, the additive particles, containing a higher dose of MRX-2843, provided more effective disease control than the synergistic particles. In contrast, particles containing an even higher, antagonistic ratio of MRX-2843 and vincristine were less effective. Thus, both the drug dose and the ratio-dependent interaction between MRX-2843 and vincristine significantly impacted therapeutic activity in vivo. Together, these findings present a systematic approach to high-throughput combination drug screening and multiagent drug delivery that maximizes the therapeutic potential of combined MRX-2843 and vincristine in T-ALL and describe a novel translational agent that could be used to enhance therapeutic responses to vincristine in patients with T-ALL. This broadly generalizable approach could also be applied to develop other constitutively synergistic combination products for the treatment of cancer and other diseases.


Asunto(s)
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Vincristina/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia de Células T/tratamiento farmacológico , Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
9.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398244

RESUMEN

The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.

10.
Br J Cancer ; 129(5): 884-894, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474721

RESUMEN

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Asunto(s)
Nicardipino , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Apoptosis , Línea Celular Tumoral , Docetaxel/farmacología , Docetaxel/uso terapéutico , Nicardipino/farmacología , Nicardipino/uso terapéutico , Complejo Represivo Polycomb 2 , Neoplasias de la Próstata/tratamiento farmacológico
11.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503208

RESUMEN

The signaling pathway of transforming growth factor-beta (TGFß) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

12.
Transl Oncol ; 34: 101707, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271121

RESUMEN

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

13.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993676

RESUMEN

Although high-dose, multi-agent chemotherapy has improved leukemia survival rates in recent years, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. Development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. To address this challenge, we developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and MLL- rearranged precursor B-cell ALL (infant ALL). In a novel, high-throughput combination drug screen, the MERTK/FLT3 inhibitor MRX-2843 synergized with venetoclax and other BCL-2 family protein inhibitors to reduce AML cell density in vitro . Neural network models based on drug exposure and target gene expression were used to identify a classifier predictive of drug synergy in AML. To maximize the therapeutic potential of these findings, we developed a combination monovalent liposomal drug formulation that maintains ratiometric drug synergy in cell-free assays and following intracellular delivery. The translational potential of these nanoscale drug formulations was confirmed in a genotypically diverse set of primary AML patient samples and both the magnitude and frequency of synergistic responses were not only maintained but were improved following drug formulation. Together, these findings demonstrate a systematic, generalizable approach to combination drug screening, formulation, and development that maximizes therapeutic potential, was effectively applied to develop a novel nanoscale combination therapy for treatment of AML, and could be extended to other drug combinations or diseases in the future.

14.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747658

RESUMEN

Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.

15.
Cell Rep ; 41(11): 111827, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516759

RESUMEN

The cancer metastasis process involves dysregulated oncogenic kinase signaling, but how this orchestrates metabolic networks and signal cascades to promote metastasis is largely unclear. Here we report that inhibition of glutamate dehydrogenase 1 (GDH1) and ribosomal S6 kinase 2 (RSK2) synergistically attenuates cell invasion, anoikis resistance, and immune escape in lung cancer and more evidently in tumors harboring epidermal growth factor receptor (EGFR)-activating or EGFR inhibitor-resistant mutations. Mechanistically, GDH1 is activated by EGFR through phosphorylation at tyrosine 135 and, together with RSK2, enhances the cAMP response element-binding protein (CREB) activity via CaMKIV signaling, thereby promoting metastasis. Co-targeting RSK2 and GDH1 leads to enhanced intratumoral CD8 T cell infiltration. Moreover, GDH1, RSK2, and CREB phosphorylation positively correlate with EGFR mutation and activation in lung cancer patient tumors. Our findings reveal a crosstalk between kinase, metabolic, and transcription machinery in metastasis and offer an alternative combinatorial therapeutic strategy to target metastatic cancers with activated EGFRs that are often EGFR therapy resistant.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neoplasias Pulmonares , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Fosforilación , Línea Celular Tumoral
16.
Life Sci Space Res (Amst) ; 35: 88-104, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36336374

RESUMEN

As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.


Asunto(s)
Radiación Cósmica , Protectores contra Radiación , Vuelo Espacial , Humanos , Radiación Cósmica/efectos adversos , Ensayos Analíticos de Alto Rendimiento , Astronautas , Nave Espacial , Protectores contra Radiación/farmacología , Dosis de Radiación
17.
Cell ; 185(11): 1974-1985.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35512704

RESUMEN

Comprehensive sequencing of patient tumors reveals genomic mutations across tumor types that enable tumorigenesis and progression. A subset of oncogenic driver mutations results in neomorphic activity where the mutant protein mediates functions not engaged by the parental molecule. Here, we identify prevalent variant-enabled neomorph-protein-protein interactions (neoPPI) with a quantitative high-throughput differential screening (qHT-dS) platform. The coupling of highly sensitive BRET biosensors with miniaturized coexpression in an ultra-HTS format allows large-scale monitoring of the interactions of wild-type and mutant variant counterparts with a library of cancer-associated proteins in live cells. The screening of 17,792 interactions with 2,172,864 data points revealed a landscape of gain of interactions encompassing both oncogenic and tumor suppressor mutations. For example, the recurrent BRAF V600E lesion mediates KEAP1 neoPPI, rewiring a BRAFV600E/KEAP1 signaling axis and creating collateral vulnerability to NQO1 substrates, offering a combination therapeutic strategy. Thus, cancer genomic alterations can create neo-interactions, informing variant-directed therapeutic approaches for precision medicine.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas B-raf , Carcinogénesis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
18.
Acta Pharmacol Sin ; 43(9): 2419-2428, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35031699

RESUMEN

Ovarian cancer is one of the most common gynecologic malignancies in women and has a poor prognosis. Taxanes are a class of standard first-line chemotherapeutic agents for the treatment of ovarian cancer. However, tumor-intrinsic and acquired resistance to taxanes poses major challenges to improving clinical outcomes. Hence, there is an urgent clinical need to understand the mechanisms of resistance in order to discover potential biomarkers and therapeutic strategies to increase taxane sensitivity in ovarian cancer. Here, we report the identification of an association between the TP53 status and taxane sensitivity in ovarian cancer cells through complementary experimental and informatics approaches. We found that TP53 inactivation is associated with taxane resistance in ovarian cancer cells, supported by the evidence from (i) drug sensitivity profiling with bioinformatic analysis of large-scale cancer therapeutic response and genomic datasets and (ii) gene signature identification based on experimental isogenic cell line models. Further, our studies revealed TP53-dependent gene expression patterns, such as overexpression of ACSM3, as potential predictive biomarkers of taxane resistance in ovarian cancer. The TP53-dependent hyperactivation of the WNT/ß-catenin pathway discovered herein revealed a potential vulnerability to exploit in developing combination therapeutic strategies. Identification of this genotype-phenotype relationship between the TP53 status and taxane sensitivity sheds light on TP53-directed patient stratification and therapeutic discoveries for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas , Proteína p53 Supresora de Tumor , Hidrocarburos Aromáticos con Puentes , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Paclitaxel/uso terapéutico , Taxoides/farmacología , Taxoides/uso terapéutico , Proteína p53 Supresora de Tumor/genética
19.
STAR Protoc ; 2(3): 100804, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34527960

RESUMEN

Protein-protein interactions (PPIs) have emerged as promising yet challenging therapeutic targets. A robust bioassay is required for rapid PPI modulator discovery. Here, we present a time-resolved Förster's (fluorescence) resonance energy transfer assay protocol for PPI modulator screening in a 1536-well plate format. We use hypomorph SMAD4R361H-SMAD3 PPI as an example to illustrate the application of the protocol for screening of variant-directed PPI inducers. This platform can be readily adapted for the discovery of both small-molecule PPI inducers and inhibitors. For complete details on the use and execution of this protocol, please refer to Tang et al. (2020).


Asunto(s)
Descubrimiento de Drogas/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Bioensayo/métodos , Células HEK293 , Humanos , Proteína Smad4/metabolismo
20.
Bioorg Med Chem ; 45: 116324, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333394

RESUMEN

The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , MAP Quinasa Quinasa 3/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , MAP Quinasa Quinasa 3/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-myc/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA