Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int Immunopharmacol ; 140: 112887, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116493

RESUMEN

Osteoarthritis (OA) is a prevalent disease of the musculoskeletal system that causes functional deterioration and diminished quality of life. Myrislignan (MRL) has a wide range of pharmacological characteristics, including an anti-inflammatory ability. Although inflammation is a major cause of OA, the role of MRL in OA treatment is still not well-understood. In this study, we analyze the anti-inflammatory and anti-ECM degradation effects of MRL both in vivo and in vitro. Rat primary chondrocytes were treated with interleukin-1ß (IL-1ß) to simulate inflammatory environmental conditions and OA in vitro. The in vivo OA rat model was established by anterior cruciate ligament transection (ACLT) on rat. Our investigation discovered that MRL lowers the IL-1ß-activated tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX2) and inducible nitric-oxide synthase (iNOS) expression in chondrocytes. Moreover, MRL effectively alleviates IL-1ß-induced extracellular matrix (ECM) degradation and promotes ECM synthesis in chondrocytes by upregulating the mRNA level expression of collagen-II and aggrecan (ACAN), downregulating the expression of matrix metalloproteinases-3,-13 (MMP-3, MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5). Gene expression profiles of different groups identified DEGs that were mainly enriched in functions associated with NF-κB signaling pathway, and other highly enriched in functions related to TNF, IL-17, Rheumatoid arthritis and cytokine-cytokine receptor signaling pathways. Venn interaction of DEGs from the abovementioned five pathways showed that Nfkbia, Il1b, Il6, Nfkb1, Ccl2, Mmp3 were highly enriched DEGs. In addition, our research revealed that MRL suppresses NF-κB and modulates the Nrf2/HO-1/JNK signaling pathway activated by IL-1ß in chondrocytes. In vivo research shows that MRL slows the progression of OA in rats. Our findings imply that MRL might be a viable OA therapeutic choice.


Asunto(s)
Condrocitos , Interleucina-1beta , Lignanos , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Células Cultivadas , Interleucina-1beta/metabolismo , Masculino , Ratas , Lignanos/farmacología , Lignanos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Progresión de la Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Modelos Animales de Enfermedad , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Transducción de Señal/efectos de los fármacos , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Humanos
2.
Biochem Biophys Res Commun ; 640: 164-172, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36512848

RESUMEN

Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment beside late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Gardenoside is a naturally compound extracted from Gardenia jasminoides Ellis, which has a variety of anti-inflammatory effects. However, few studies have been conducted to determine the role of gardenoside in OA. This study aimed to explore whether gardenoside has effect in OA treatment. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of gardenoside at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Via in vitro experiments, our study found that gardenoside lowers the gene expression of COX-2, iNOS, IL-6, and reduced the ROS production of chondrocytes induced by IL-1ß. Moreover, it effectively alleviates ECM degradation caused by IL-1ß and promotes the ECM synthesis in chondrocytes by upregulating collagen-II and the ACAN expression, downregulating the expression of MMP-3, MMP-13, and ADAMTS-5 expression. Further, our study showed that gardenoside inhibits NF-κB signaling pathway activated by IL-1ß in chondrocytes. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with gardenoside into the knee articular cavity. In vivo study suggested that gardenoside attenuates OA progression in rats. As a whole, in vitro and in vivo results highlight gardenoside is a promising OA treatment agent.


Asunto(s)
Matriz Extracelular , Iridoides , FN-kappa B , Osteoartritis , Animales , Ratas , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo , Iridoides/farmacología , Iridoides/uso terapéutico , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Transducción de Señal , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo
3.
Drug Des Devel Ther ; 16: 3793-3804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345305

RESUMEN

Purpose: Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment besides late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Madecassic acid (MA) is the first native triterpenoid compound extracted from Centella asiatica, which has a variety of anti-inflammatory effects. However, the role of MA in OA therapy has not been reported. This study aimed to explore whether MA could suppress the inflammatory response, preserve and restore chondrocyte functions, and ameliorate the progression of OA in vitro and in vivo. Methods: Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of MA at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and Western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with MA into the knee articular cavity. Results: We found that MA could down-regulate the IL-1ß-induced up-regulation of COX-2, iNOS and IL-6 and restore the cytoskeletal integrity of chondrocytes treated with IL-1ß. Moreover, MA protects chondrocytes from IL-1ß-induced ECM degradation by upregulating ECM synthesis related protein expression, including collagen-II and ACAN, and further down-regulating ECM catabolic related protein expression, including MMP-3 and MMP-13. Furthermore, we found that NF-κB/IκBα and PI3K/AKT signaling pathways were involved in the regulatory effects of MA on the inflammation inhibition and promotion of ECM anabolism on IL-1ß-induced chondrocytes. Conclusion: These findings suggest that MA appears to be a potentially small molecular drug for rat OA.


Asunto(s)
Osteoartritis , Triterpenos , Ratas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Células Cultivadas , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos , Interleucina-1beta/metabolismo , Triterpenos/uso terapéutico , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico
4.
J Cell Biochem ; 119(1): 1041-1049, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28853173

RESUMEN

mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt-induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self-renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony-Forming Unit-Fibroblast (CFU-F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a-induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self-renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a-induced osteoblast differentiation and protein anabolism.


Asunto(s)
Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Proteína Wnt3A/farmacología
5.
Bone ; 97: 130-138, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28108317

RESUMEN

Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects.


Asunto(s)
Silenciador del Gen , Glucocorticoides/efectos adversos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Osteogénesis , Osteoporosis/inducido químicamente , Osteoporosis/genética , Proteínas Smad/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/metabolismo , Resorción Ósea/complicaciones , Resorción Ósea/patología , Diferenciación Celular/efectos de la radiación , Dexametasona/efectos adversos , Femenino , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Osteoporosis/complicaciones , Osteoporosis/patología , Placenta/citología , Embarazo , Proteínas Smad/genética
6.
J Cell Biochem ; 118(4): 748-753, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27606668

RESUMEN

mTORC1 signaling has been shown to promote limb skeletal growth through stimulation of protein synthesis in chondrocytes. However, potential roles of mTORC1 in prechondrogenic mesenchyme have not been explored. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in prechondrogenic limb mesenchymal cells. Deletion of Raptor reduced the size of limb bud cells, resulting in overall diminution of the limb bud without affecting skeletal patterning. We then examined the potential role of mTORC1 in chondrogenic differentiation in vitro. Both pharmacological and genetic disruption of mTORC1 significantly suppressed the number and size of cartilage nodules in micromass cultures of limb bud mesenchymal cells. Similarly, inhibition of mTORC1 signaling in chondrogenic ATDC5 cells greatly impaired cartilage nodule formation, and decreased the expression of the master transcriptional factor Sox9, along with the cartilage matrix genes Acan and Col2a1. Thus, we have identified an important role for mTORC1 signaling in promoting limb mesenchymal cell growth and chondrogenesis during embryonic development. J. Cell. Biochem. 118: 748-753, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Condrogénesis/fisiología , Esbozos de los Miembros/embriología , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Esbozos de los Miembros/citología , Esbozos de los Miembros/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Embarazo , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/deficiencia , Serina-Treonina Quinasas TOR/genética
7.
Stem Cell Res Ther ; 7(1): 138, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27649692

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in cell-based therapy owing to their multilineage potential and low immunogenicity. However, low differentiation efficiency and unpredictable immunogenicity of allogeneic MSCs in vivo limit their success in therapeutic treatment. Herein, we evaluated the differentiation potential and immunogenicity of human placenta-derived MSCs manipulated with osteogenic priming and dedifferentiation process. METHODS: MSCs from human placentas were subjected to osteogenic induction and then cultivated in osteogenic factor-free media; the obtained cell population was termed dedifferentiated mesenchymal stem cells (De-MSCs). De-MSCs were induced into osteo-, chondro- and adipo-differentiation in vitro. Cell proliferation was quantified by a Cell-Counting Kit-8 or tritiated thymidine ([(3)H]-TdR) incorporation. Meanwhile, the osteogenesis of De-MSCs in vivo was assayed by real-time PCR and histological staining. The expressions of stem cell markers and co-stimulatory molecules on De-MSCs and lymphocytes from primed BALB/c mouse with De-MSCs were determined by flow cytometry. RESULTS: De-MSCs exhibited some properties similar to MSCs including multiple differentiation potential and hypoimmunogenicity. Upon re-osteogenic induction, De-MSCs exhibited higher differentiation capability than MSCs both in vitro and in vivo. Of note, De-MSCs had upregulated immunogenicity in association with their osteogenesis, reflected by the alternated expressions of co-stimulatory molecules on the surface and decreased suppression on T cell activation. Functionally, De-MSC-derived osteoblasts could prime lymphocytes of peripheral blood and spleen in BALB/c mice in vivo. CONCLUSIONS: These data are of great significance for the potential application of De-MSCs as an alternative resource for regenerative medicine and tissue engineering. In order to avoid being rejected by the host during allogeneic De-MSC therapy, we suggest that immune intervention should be considered to boost the immune acceptance and integration because of the upregulated immunogenicity of De-MSCs with redifferentiation in clinical applications.


Asunto(s)
Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Desdiferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Medios de Cultivo/química , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , Placenta/citología , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA