Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Infect Disord Drug Targets ; 19(4): 428-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29852876

RESUMEN

BACKGROUND: The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. OBJECTIVE: To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. METHODS: The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. RESULTS: CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-ß-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-ß-glucan synthase. CONCLUSION: In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Pared Celular/efectos de los fármacos , Tiazoles/farmacología , Animales , Antifúngicos/síntesis química , Caenorhabditis elegans/microbiología , Candidiasis/microbiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Tiazoles/síntesis química
2.
Future Med Chem ; 10(7): 779-794, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29569952

RESUMEN

Chronic Staphylococcus aureus infections are complicated by frequent relapses not only from the development of drug resistance to conventional antibiotics, but also through the formation of persister bacterial cells. Bacterial persisters are in a transient, metabolically inactive state, making conventional antibiotics that target essential cellular growth processes ineffective, resulting in high clinical failure rates of antibiotic chemotherapy. The development of new antibiotics against persistent S. aureus is an urgent issue. Over the last decade, new strategies to identify S. aureus persister-active compounds have been proposed. This review summarizes the proposed targets, antipersister compounds and innovative methods that may augment conventional antibiotics against S. aureus persisters. The reviewed antipersister strategies can be summarized as two broad categories; directly targeting growth-independent targets and potentiating existing, ineffective antibiotics by aiding uptake or accessibility.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Animales , Antineoplásicos/farmacología , Proteínas Bacterianas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Aprobación de Drogas/legislación & jurisprudencia , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Estados Unidos , United States Food and Drug Administration
3.
BMC Microbiol ; 13: 217, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24083556

RESUMEN

BACKGROUND: Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. RESULTS: We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. CONCLUSIONS: G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.


Asunto(s)
Antiinfecciosos/farmacología , Candida albicans/efectos de la radiación , Lepidópteros/microbiología , Luz , Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Animales , Antiinfecciosos/administración & dosificación , Recuento de Colonia Microbiana , Quimioterapia Combinada/métodos , Fluconazol/administración & dosificación , Fluconazol/farmacología , Hemolinfa/microbiología , Larva/microbiología , Modelos Animales , Fármacos Fotosensibilizantes/administración & dosificación , Análisis de Supervivencia
4.
Front Microbiol ; 3: 120, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22514547

RESUMEN

Opportunistic fungal pathogens may cause superficial or serious invasive infections, especially in immunocompromised and debilitated patients. Invasive mycoses represent an exponentially growing threat for human health due to a combination of slow diagnosis and the existence of relatively few classes of available and effective antifungal drugs. Therefore systemic fungal infections result in high attributable mortality. There is an urgent need to pursue and deploy novel and effective alternative antifungal countermeasures. Photodynamic therapy (PDT) was established as a successful modality for malignancies and age-related macular degeneration but photodynamic inactivation has only recently been intensively investigated as an alternative antimicrobial discovery and development platform. The concept of photodynamic inactivation requires microbial exposure to either exogenous or endogenous photosensitizer molecules, followed by visible light energy, typically wavelengths in the red/near infrared region that cause the excitation of the photosensitizers resulting in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation and death. Antifungal PDT is an area of increasing interest, as research is advancing (i) to identify the photochemical and photophysical mechanisms involved in photoinactivation; (ii) to develop potent and clinically compatible photosensitizers; (iii) to understand how photoinactivation is affected by key microbial phenotypic elements multidrug resistance and efflux, virulence and pathogenesis determinants, and formation of biofilms; (iv) to explore novel photosensitizer delivery platforms; and (v) to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA