Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986757

RESUMEN

Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.

2.
Food Chem ; 370: 131012, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500293

RESUMEN

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Asunto(s)
Peumus , Animales , Antioxidantes/farmacología , Frutas , Humanos , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta
3.
Microorganisms ; 8(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348574

RESUMEN

Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules' concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine's intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH's role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.

4.
Molecules ; 25(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545715

RESUMEN

Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary time-dependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications.


Asunto(s)
Antifúngicos , Botrytis/crecimiento & desarrollo , Piridinas , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacología
5.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049488

RESUMEN

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Asunto(s)
Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamiento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Línea Celular Tumoral , Endocitosis , Células HeLa , Humanos , Nanopartículas/ultraestructura
6.
FEMS Microbiol Lett ; 363(17)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27465490

RESUMEN

The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human ß-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.


Asunto(s)
ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato/metabolismo , Neisseria gonorrhoeae/metabolismo , Eliminación de Secuencia , ADP Ribosa Transferasas/química , Secuencia de Aminoácidos , Biocatálisis , Western Blotting , Codón Iniciador , Humanos , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/genética , Regiones Promotoras Genéticas
7.
Microbiology (Reading) ; 162(8): 1367-1378, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27260307

RESUMEN

The genomic island 9 (SPI-9) from Salmonella enterica serovar Typhi (S. Typhi) carries three ORFs (STY2876, STY2877, STY2878) presenting 98 % identity with a type 1 secretory apparatus (T1SS), and a single ORF (STY2875) similar to a large RTX-like protein exhibiting repeated Ig domains. BapA, the Salmonella enterica serovar Enteritidis orthologous to S. Typhi STY2875, has been associated with biofilm formation, and is described as a virulence factor in mice. Preliminary in silico analyses revealed that S. Typhi STY2875 ORF has a 600 bp deletion compared with S. Enteritidis bapA, suggesting that S. Typhi STY2875 might be non-functional. At present, SPI-9 has not been studied in S. Typhi. We found that the genes constituting SPI-9 are arranged in an operon whose promoter was up-regulated in high osmolarity and low pH in a RpoS-dependent manner. All the proteins encoded by S. Typhi SPI-9 were located at the membrane fraction, consistent with their putative role as T1SS. Furthermore, SPI-9 contributed to adherence of S. Typhi to epithelial cells when bacteria were grown under high osmolarity or low pH. Under the test conditions, S. Typhi SPI-9 did not participate in biofilm formation. SPI-9 is functional in S. Typhi and encodes an adhesin induced under conditions normally found in the intestine, such as high osmolarity. Hence, this is an example of a locus that might be designated a pseudogene by computational approaches but not by direct biological assays.


Asunto(s)
Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Células Epiteliales/microbiología , Islas Genómicas/genética , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Factor sigma/genética , Sistemas de Secreción Tipo I/genética , Adhesinas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Células CACO-2 , Línea Celular Tumoral , Escherichia coli/genética , Humanos , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidad , Factores de Virulencia/genética
9.
Biol Res ; 48: 34, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26149381

RESUMEN

BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte--bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. RESULTS: We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Δstg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. CONCLUSIONS: S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukaryotic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption.


Asunto(s)
Células Epiteliales/microbiología , Fimbrias Bacterianas/genética , Macrófagos/microbiología , Operón/genética , Operón/fisiología , Salmonella typhi/genética , Adhesión Celular , Fimbrias Bacterianas/fisiología , Humanos , Salmonella typhi/fisiología
10.
Biochem Biophys Res Commun ; 458(1): 46-51, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25637663

RESUMEN

It has been proposed that some antibiotics exert additional damage through reactive oxygen species (ROS) production. Since H2S protects neurons and cardiac muscle from oxidative stress, it has been hypothesized that bacterial H2S might, similarly, be a cellular protector against antibiotics. In Enterobacteriaceae, H2S can be produced by the cysJIH pathway, which uses sulfate as the sulfur source. CysB, in turn, is a positive regulator of cysJIH. At present, the role of S. Typhimurium cysJIH operon in the protection to reactive oxygen species (ROS) induced by antimicrobial compounds remains to be elucidated. In this work, we evaluated the role of cysJIH and cysB in ROS accumulation, superoxide dismutase (SOD) activity, reduced thiol accumulation, and H2S accumulation in S. Typhimurium, cultured in either sulfate or cysteine as the sole sulfur source. Furthermore, we assessed the effects of the addition of ceftriaxone (CEF) and menadione (MEN) in these same parameters. In sulfate as the sole sulfur source, we found that the cysJIH operon and the cysB gene were required to full growth in minimal media, independently on the addition of CEF or MEN. Most importantly, both cysJIH and cysB contributed to diminish ROS levels, increase the SOD activity, increase the reduced thiols, and increase the H2S levels in presence of CEF or MEN. Moreover, the cysJIH operon exhibited a CysB-dependent upregulation in presence of these two antimicrobials compounds. On the other hand, when cysteine was used as the sole sulfur source, we found that cysJIH operon was completely negligible, were only cysB exhibited similar phenotypes than the described for sulfate as sulfur source. Unexpectedly, CysB downregulated cysJIH operon when cysteine was used instead of sulfate, suggesting a complex regulation of this system.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Ceftriaxona/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Eliminación de Gen , Sulfuro de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Operón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Sulfatos/metabolismo , Sulfito Reductasa (NADPH)/genética , Sulfito Reductasa (NADPH)/metabolismo , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vitamina K 3/farmacología
11.
Biol. Res ; 48: 1-8, 2015. graf
Artículo en Inglés | LILACS | ID: biblio-950798

RESUMEN

BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) stg operon, encoding a chaperone/usher fimbria (CU), contributes to an increased adherence to human epithelial cells. However, one report suggests that the presence of the Stg fimbria impairs the monocyte-bacteria association, as deduced by the lower level of invasion to macrophage-like cells observed when the stg fimbrial cluster was overexpressed. Nevertheless, since other CU fimbrial structures increase the entry of S. Typhi into macrophages, and considering that transcriptomic analyses revealed that stg operon is indeed expressed in macrophages, we reassessed the role of the stg operon in the interaction between S. Typhi strain STH2370 and human cells, including macrophage-like cells and mononuclear cells directly taken from human peripheral blood. RESULTS: We compared S. Typhi STH2370 WT, a Chilean clinical strain, and the S. Typhi STH2370 Astg mutant with respect to association and invasion using epithelial and macrophage-like cells. We observed that deletion of stg operon reduced the association and invasion of S. Typhi, in both cellular types. The presence of the cloned stg operon restored the WT phenotype in all the cases. Moreover, we compared Salmonella enterica sv. Typhimurium 14028s (S. Typhimurium, a serovar lacking stg operon) and S. Typhimurium heterologously expressing S. Typhi stg. We found that the latter presents an increased cell disruption of polarized epithelial cells and an increased association in both epithelial and macrophage-like cells. CONCLUSIONS: S. Typhi stg operon encodes a functional adhesin that participates in the interaction bacteria-eukary-otic cells, including epithelial cells and macrophages-like cells. The phenotypes associated to stg operon include increased association and consequent invasion in bacteria-eukaryotic cells, and cell disruption.


Asunto(s)
Humanos , Operón/fisiología , Operón/genética , Salmonella typhi/genética , Fimbrias Bacterianas/genética , Células Epiteliales/microbiología , Macrófagos/microbiología , Salmonella typhi/fisiología , Adhesión Celular , Fimbrias Bacterianas/fisiología
12.
BMC Microbiol ; 10: 312, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21138562

RESUMEN

BACKGROUND: Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection. RESULTS: We investigated whether the S. Typhi trans-complemented with the functional sseJ gene from S. Typhimurium (STM) affects the cytotoxicity toward cultured cell lines. It was found that S. Typhi harbouring sseJSTM presents a similar cytotoxicity level and intracellular retention/proliferation of cultured epithelial cells (HT-29 or HEp-2) as wild type S. Typhimurium. These phenotypes are significantly different from wild type S. Typhi CONCLUSIONS: Based on our results we conclude that the mutation that inactivate the sseJ gene in S. Typhi resulted in evident changes in the behaviour of bacteria in contact with eukaryotic cells, plausibly contributing to the S. Typhi adaptation to the systemic infection in humans.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Salmonella typhi/fisiología , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Proliferación Celular , Prueba de Complementación Genética , Humanos , Mutación , Seudogenes , Infecciones por Salmonella/microbiología , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Virulencia
13.
Res Microbiol ; 159(4): 279-87, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18434098

RESUMEN

Comparison of genome sequences of Salmonella enterica serovars Typhi and Typhimurium reveals that S. Typhi has a small 2.3kb genomic island missing in S. Typhimurium, designated Salmonella pathogenicity island 18 (SPI-18), which includes two potential genes. One of these, hlyE, encodes a hemolysin related to the Escherichia coli K12 HlyE hemolysin. PCR assays show that SPI-18 is present in S. Typhi and in many other, but not all, serovars of S. enterica subsp. enterica belonging to the SARB collection. HlyE activity cannot be detected in S. Typhi by means of standard plate assays. Nevertheless, we were able to reveal this activity upon lysis of bacterial cells with phages, in the presence of ampicillin, and in a ompA genetic background, conditions that compromise the integrity of the bacterial envelope. Almost all serovars of the SARB collection shown to cause systemic infections in humans have SPI-18 and hlyE and express an active hemolysin revealed upon bacterial envelope destabilization. S. Typhi hlyE mutants are impaired in invasion of human epithelial cells in vitro, and its heterologous expression in S. Typhimurium improves the colonization of deep organs in mice, demonstrating that the HlyE hemolysin is a new virulence determinant.


Asunto(s)
Células Epiteliales/microbiología , Transferencia de Gen Horizontal , Proteínas Hemolisinas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhi/patogenicidad , Salmonella typhimurium/patogenicidad , Animales , Permeabilidad de la Membrana Celular , Células Cultivadas , Islas Genómicas , Proteínas Hemolisinas/genética , Humanos , Ratones , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhi/genética , Salmonella typhi/metabolismo , Salmonella typhi/virología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/virología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
Genetics ; 173(1): 25-34, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16489221

RESUMEN

The Salmonella enterica tsx gene encodes a nucleoside-specific outer membrane channel. The Tsx porin is essential for the prototrophic growth of S. enterica sv. Typhi in the absence of nucleosides. RT-PCR analysis shows that the tsx gene is cotranscribed with an open reading frame unique to S. enterica, impX (STY0450), which encodes an inner membrane protein 108 amino acids in length, which is predicted to have only two transmembrane alpha-helices. Fusions of the lacZ gene to both tsx and impX reveal that the transcription of both genes is induced in the presence of adenosine. A null mutation in the S. Typhi impX gene suppresses the induced auxotrophy for adenosine or thymidine resulting from a tsx mutation and confers sensitivity to high concentrations of adenosine or thymidine. The ImpX protein, when tagged with a 3xFLAG epitope, is functional and associates with the inner membrane; impX mutants are defective in the export of 3H-radiolabeled thymidine. Taken together, these and other results suggest that the S. Typhi Tsx porin and ImpX inner membrane protein facilitate competing mechanisms of thymidine influx and efflux, respectively, to maintain the steady-state levels of internal nucleoside pools.


Asunto(s)
Adenosina/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Genes Bacterianos/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhi/genética , Salmonella typhi/metabolismo , Transcripción Genética/efectos de los fármacos , ADN Bacteriano/biosíntesis , Epistasis Genética , Mutación/genética , Transporte de Proteínas/genética , Salmonella enterica/clasificación , Salmonella typhi/clasificación , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA