Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6966, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907483

RESUMEN

During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Fibroblastos Asociados al Cáncer/patología , Mecanotransducción Celular , Línea Celular Tumoral , Fibroblastos/patología , Microambiente Tumoral , Neoplasias/patología
2.
Nat Commun ; 14(1): 4014, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419987

RESUMEN

The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.


Asunto(s)
Células Epiteliales , Microscopía , Estrés Mecánico , Epitelio
3.
Cell Rep ; 41(2): 111475, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223752

RESUMEN

Epithelial cell divisions are coordinated with cell loss to preserve epithelial integrity. However, how epithelia adapt their rate of cell division to changes in cell number, for instance during homeostatic turnover or wounding, is not well understood. Here, we show that epithelial cells sense local cell density through mechanosensitive E-cadherin adhesions to control G2/M cell-cycle progression. As local cell density increases, tensile forces on E-cadherin adhesions are reduced, which prompts the accumulation of the G2 checkpoint kinase Wee1 and downstream inhibitory phosphorylation of Cdk1. Consequently, dense epithelia contain a pool of cells that are temporarily halted in G2 phase. These cells are readily triggered to divide following epithelial wounding due to the consequent increase in intercellular forces and resulting degradation of Wee1. Our data collectively show that epithelial cell division is controlled by a mechanical G2 checkpoint, which is regulated by cell-density-dependent intercellular forces sensed and transduced by E-cadherin adhesions.


Asunto(s)
Cadherinas , Células Epiteliales , Cadherinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Células Epiteliales/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Fosforilación
4.
Nat Cell Biol ; 23(7): 745-757, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155382

RESUMEN

Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.


Asunto(s)
Movimiento Celular , Células Epiteliales/fisiología , Mucosa Intestinal/fisiología , Mecanotransducción Celular , Animales , Comunicación Celular , Uniones Célula-Matriz/fisiología , Células Cultivadas , Simulación por Computador , Células Epiteliales/metabolismo , Femenino , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , Ratones Transgénicos , Microscopía Confocal , Modelos Biológicos , Organoides , Estrés Mecánico , Tensión Superficial , Factores de Tiempo
5.
Nat Phys ; 15(1): 79-88, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31537984

RESUMEN

Development, regeneration and cancer involve drastic transitions in tissue morphology. In analogy with the behavior of inert fluids, some of these transitions have been interpreted as wetting transitions. The validity and scope of this analogy are unclear, however, because the active cellular forces that drive tissue wetting have been neither measured nor theoretically accounted for. Here we show that the transition between two-dimensional epithelial monolayers and three-dimensional spheroidal aggregates can be understood as an active wetting transition whose physics differs fundamentally from that of passive wetting phenomena. By combining an active polar fluid model with measurements of physical forces as a function of tissue size, contractility, cell-cell and cell-substrate adhesion, and substrate stiffness, we show that the wetting transition results from the competition between traction forces and contractile intercellular stresses. This competition defines a new intrinsic lengthscale that gives rise to a critical size for the wetting transition in tissues, a striking feature that has no counterpart in classical wetting. Finally, we show that active shape fluctuations are dynamically amplified during tissue dewetting. Overall, we conclude that tissue spreading constitutes a prominent example of active wetting - a novel physical scenario that may explain morphological transitions during tissue morphogenesis and tumor progression.

6.
Nature ; 563(7730): 203-208, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401836

RESUMEN

Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour-which we term active superelasticity-that enables epithelial sheets to sustain extreme stretching under constant tension.


Asunto(s)
Elasticidad , Células Epiteliales/citología , Actinas/metabolismo , Aleaciones , Animales , Fenómenos Biomecánicos , Células CACO-2 , Forma de la Célula , Tamaño de la Célula , Citocalasina D/metabolismo , Perros , Células Epiteliales/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Células de Riñón Canino Madin Darby , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA