Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
ChemMedChem ; 19(16): e202400172, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38724442

RESUMEN

Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Detección Precoz del Cáncer , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/diagnóstico por imagen
2.
Biomed Mater ; 19(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387062

RESUMEN

Nanoscale materials have demonstrated a very high potential in anticancer therapy by properly adjusting their functionalization and physicochemical properties. Herein, we report the synthesis of some novel vanadocene-loaded silica-based nanomaterials incorporating four different S-containing amino acids (penicillamine, methionine, captopril, and cysteine) and different fluorophores (rhodamine B, coumarin 343 or Alexa Fluor™ 647), which have been characterized by diverse solid-state spectroscopic techniques viz; FTIR, diffuse reflectance spectroscopies,13C and51V solid-state NMR spectroscopy, thermogravimetry and TEM. The analysis of the biological activity of the novel vanadocene-based nanostructured silicas showed that the materials containing cysteine and captopril aminoacids demonstrated high cytotoxicity and selectivity against triple negative breast cancer cells, making them very promising antineoplastic drug candidates. According to the biological results it seems that vanadium activity is connected to its incorporation through the amino acid, resulting in synergy that increases the cytotoxic activity against cancer cells of the studied materials presumably by increasing cell internalization. The results presented herein hold significant potential for future developments in mesoporous silica-supported metallodrugs, which exhibit strong cytotoxicity while maintaining low metal loading. They also show potential for theranostic applications highlighted by the analysis of the optical properties of the studied systems after incorporating rhodamine B, coumarin 343 (possible)in vitroanticancer analysis, or Alexa Fluor™ 647 (in vivostudies of cancer models).


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Dióxido de Silicio/química , Cisteína/uso terapéutico , Medicina de Precisión , Captopril/uso terapéutico , Nanopartículas/química , Antineoplásicos/química , Porosidad
3.
Pharmaceutics ; 16(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38258103

RESUMEN

The search for alternatives to cisplatin has led to the development of new metal complexes where thiazoline derivatives based on platinum(II) and palladium(II) stand out. In this sense, the Pt(II) and Pd(II) complexes coordinated with the thiazoline derivative ligand 2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine (TdTn), with formula [PtCl2(TdTn)] and [PdCl2(TdTn)], have previously shown good results against several cancer lines; however, in this work, we have managed to improve their activity by supporting them on mesoporous silica nanoparticles (MSN). The incorporation of metal compounds with a melatonin derivative (5-methoxytryptamine, 5MT), which is a well-known antioxidant and apoptosis inducer in different types of cancer, has been able to increase the cytotoxic activity of both MSN-supported and isolated complexes with only a very low amount (0.35% w/w) of this antioxidant. The covalently functionalized systems that have been synthesized are able to increase selectivity as well as accumulation in HeLa cells. The final materials containing the metal complexes and 5MT (MSN-5MT-PtTdTn and MSN-5MT-PdTdTn) required up to nine times less metal to achieve the same cytotoxic activity than their corresponding non-formulated counterparts did, thus reducing the potential side effects caused by the use of the free metal complexes.

4.
Chemistry ; 29(60): e202301845, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37540499

RESUMEN

The pharmacological activity of organotin(IV) complexes in cancer therapy is well recognized but their large applicability is hampered by their poor water solubility. Hence, carbon dots, in particular nitrogen-doped graphene quantum dots (NGQDs), may be a promising alternative for the efficient delivery of organotin(IV) compounds as they have a substantial aqueous solubility, a good chemical stability, and non-toxicity as well as a bright photoluminescence that make them ideal for theranostic applications against cancer. Two different multifunctional nanosystems have been synthesized and fully characterized based on two fragments of organotin-based cytotoxic compounds and 4-formylbenzoic acid (FBA), covalently grafted onto the NGQDs surface. Subsequently, an in vitro determination of the therapeutic and theranostic potential of the achieved multifunctional systems was carried out. The results showed a high cytotoxic potential of the NGQDs-FBA-Sn materials against breast cancer cell line (MDA-MB-231) and a lower effect on a non-cancer cell line (kidney cells, HEK293T). Besides, thanks to their optical properties, the dots enabled their fluorescence molecular imaging in the cytoplasmatic region of the cells pointing towards a successful cellular uptake and a release of the metallodrug inside cancer cells (NGQDs-FBA-Sn).


Asunto(s)
Grafito , Puntos Cuánticos , Neoplasias de la Mama Triple Negativas , Humanos , Grafito/química , Puntos Cuánticos/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células HEK293 , Imagen Molecular
5.
Curr Pharm Des ; 29(22): 1791-1799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37518995

RESUMEN

AIMS: The fight against cancer is an active research topic that combines several disciplines to find suitable agents to treat various tumours. BACKGROUND: Following cisplatin, organometallic compounds, including titanocene derivatives, have been tested as antitumoral agents. However, key issues still need to be addressed in metallodrug chemotherapy relating to solubility, stability, and dosage. Mesoporous silica nanoparticles, being low toxic biocompatible materials with high loading capacity, are ideal candidates to overcome these problems. OBJECTIVE: This study aimed to prepare and structurally characterize titanocene functionalized mesoporous silica nanoparticles and evaluate their cytotoxic activity against cancer cells. METHODS: The preparation of titanocene functionalized mesoporous silica nanoparticles was achieved by synthetic protocols, involving either grafting or tethering. Characterization was carried out using standard techniques, FT-IR, XRD, XRF, TEM, and BET. The titanocene functionalized materials were studied as antitumoral agents in the breast cancer lines MCF-7 and MDA-MB-231. RESULTS: The functionalized MSN showed promising antitumoral activity against cells lines MCF-7 and MDAMB- 231 up to 9 times more than titanocene alone. CONCLUSION: This study reported the potential of titanocene-functionalized mesoporous silica nanoparticles in future chemotherapeutic actions.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Compuestos Organometálicos , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/uso terapéutico , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/química , Nanopartículas/química , Dióxido de Silicio/química , Porosidad
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982616

RESUMEN

Calcium carbonate, one of the most commonly found biominerals produced by organisms, has shown great potential for the development of systems with biological applications due to its excellent biocompatibility, biodegradability, and simple chemical composition. Here, we focus on the synthesis of various carbonate-based materials with vaterite phase control and their subsequent functionalization for applications in treating glioblastoma, one of the most limiting tumors currently without effective treatments. The incorporation of l-cysteine into the systems increased cell selectivity while the incorporation of manganese supplied the materials with cytotoxic capacity. Extensive characterization of the systems by infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, X-ray fluorescence, and transmission electron microscopy confirmed the incorporation of the different fragments causing selectivity and cytotoxicity to the systems. To verify their therapeutic activity, the vaterite-based materials were tested in the CT2A cell line (murine glioma) and compared to SKBR3 (breast cancer) and HEK-293T (human kidney) cell lines. These studies on the cytotoxicity of the materials have shown promising results that can encourage future in vivo studies in glioblastoma models.


Asunto(s)
Glioblastoma , Humanos , Animales , Ratones , Microscopía Electrónica de Rastreo , Glioblastoma/tratamiento farmacológico , Carbonatos , Carbonato de Calcio/química , Microscopía Electrónica de Transmisión , Difracción de Rayos X
7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768659

RESUMEN

Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Dióxido de Silicio/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas , Porosidad
8.
Pharmaceutics ; 15(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36839883

RESUMEN

Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.

9.
Biomater Adv ; 140: 213054, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964389

RESUMEN

A series of nanostructured SBA-15-based materials functionalized with the tetraorganotin(IV) metallodrugs Ph3Sn(CH2)nOH (n = 3, 4, 6, 8 and 11) are synthesized and structurally characterized by different techniques used in solid-state chemistry. The cytotoxicity of both the organotin(IV) compounds and the tin-functionalized SBA-15 materials are studied against different cancer cell lines observing that the materials have similar cytotoxic activity in comparison with the free organotin compounds in terms of mass. However, considering that the percentage of active metal compound loaded into material is low, the utilization of mesoporous silica as drug vehicle clearly improves the cytotoxic effectiveness of metal-based drugs against cancer cells. One of the most potent between all tested systems is material SBA-15~Cl|Ph3Sn(CH2)8OH. Its cytotoxicity seems to come from additional mechanisms apart from apoptosis provoking cell reprogram in B16 melanoma into more mature and less aggressive phenotype. Moderated production of ROS/RNS is probably in the background of observed phenomenon. Obtained results are further confirmed in syngeneic mouse model of melanoma in C57BL6 mice. The in vivo results show that SBA-15 do not disturb tumor growth, while both Ph3Sn(CH2)8OH and SBA-15~Cl|Ph3Sn(CH2)8OH significantly decreases tumor volume with an enhancement of the antitumor potential of the tetraorganotin(IV) compound upon immobilization in SBA-15.


Asunto(s)
Antineoplásicos , Melanoma Experimental , Compuestos Orgánicos de Estaño , Animales , Antineoplásicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Compuestos Orgánicos de Estaño/farmacología , Dióxido de Silicio/química
10.
Biomater Adv ; 137: 212823, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929238

RESUMEN

A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Humanos , Nanopartículas/uso terapéutico , Medicina de Precisión , Dióxido de Silicio/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
11.
Biomater Adv ; 137: 212819, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929256

RESUMEN

Nanotechnology has immensely advanced the field of cancer diagnostics and treatment by introducing potential delivery vehicles as carriers for drugs or therapeutic agents. In due course, mesoporous silica nanoparticles (MSNs) have emerged as excellent vehicles for delivering drugs, biomolecules, and biomaterials, attributed to their solid framework and porosity providing a higher surface area for decorating with various functional ligands. Recently, the metal tin (Sn) has gained huge importance in cancer research owing to its excellent cytotoxicity and ability to kill cancer cells. In the present work, we synthesized MSNs, conjugated them with organotin compounds, and characterized them using various physicochemical techniques. Subsequently, the biological evaluation of MSN (S1), MSN-MP (S2) and tin-conjugated MSNs (S3: MSN-MP-SnPh3) (MP = 3-mercaptopropyltriethoxysilane) revealed that these nanoconjugates induced cytotoxicity, necrosis, and apoptosis in MCF-7 cells. Moreover, these nanoconjugates exhibited anti-angiogenic properties as demonstrated in the chick embryo model. The increase of reactive oxygen species (ROS) was found as a one of the plausible mechanisms underlying cancer cell cytotoxicity induced by these nanoconjugates, encouraging their application for the treatment of cancer. The tin-conjugated MSNs demonstrated less toxicity to normal cells compared to cancer cells. Furthermore, the genotoxicity studies revealed the clastogenic and aneugenic effects of these nanoconjugates in CHO cells mostly at high concentrations. These interesting observations are behind the idea of developing tin-conjugated MSNs as prospective candidates for anticancer therapy.


Asunto(s)
Antineoplásicos , Dióxido de Silicio , Estaño , Animales , Embrión de Pollo , Cricetinae , Humanos , Antineoplásicos/farmacología , Supervivencia Celular , Cricetulus , Portadores de Fármacos/química , Nanoconjugados , Dióxido de Silicio/química , Estaño/farmacología
12.
Metallomics ; 13(11)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34724067

RESUMEN

New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.


Asunto(s)
Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Técnicas In Vitro , Estructura Molecular
13.
ACS Appl Bio Mater ; 4(5): 4394-4405, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006851

RESUMEN

Cancer is the leading cause of death in the developed world. In the last few decades, photodynamic therapy (PDT) has augmented the number of medical techniques to treat this disease in the clinics. As the pharmacological active species to kill cancer cells are only generated upon light irradiation, PDT is associated with an intrinsic first level of selectivity. However, since PDT agents also accumulate in the surrounding, healthy tissue and since it is practically very challenging to only expose the tumor site to light, some side effects can be observed. Consequently, there is a need for a selective drug delivery system, which would give a second level of selectivity. In this work, a dual tumor targeting approach is presented based on mesoporous silica nanoparticles, which act by the enhanced permeability and retention effect, and the conjugation to folic acid, which acts as a targeting moiety for folate receptor-overexpressed cancer cells. The conjugates were found to be nontoxic in noncancerous human normal lung fibroblast cells while showing a phototoxic effect upon irradiation at 480 or 540 nm in the low nanomolar range in folate receptor overexpressing cancerous human ovarian carcinoma cells, demonstrating their potential for cancer targeted treatment.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Complejos de Coordinación/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ensayo de Materiales , Estructura Molecular , Nanopartículas/química , Tamaño de la Partícula , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Porosidad , Piridinas/química , Piridinas/farmacología , Rutenio/química , Rutenio/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología
14.
Dalton Trans ; 49(46): 16830-16848, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33179662

RESUMEN

Four new water soluble Co(ii), Cu(ii) and Zn(ii) ionic metal complexes (1-4) [Cu(diimine)(H2O)2(glycinate)]+[glycinate]-, [Co(diimine)(H2O)4]+[glycinate]- and [Zn(diimine) (H2O)4]+[glycinate]-, where diimine = 2,2'-bipyridine (1-3) and 1,10-phenanthroline (4) were synthesized and thoroughly characterized by spectroscopic and single X-ray crystallographic studies. Complex 1 possesses a triclinic crystal system with a penta-coordinated geometry whereas complexes 2-4 crystallized in an isostructural monoclinic system having distorted octahedral geometry. Density functional theory (DFT) studies for complexes 1-4 were performed to correlate their geometrical parameters and to calculate the energy of frontier molecular orbitals. The corroborative results of spectroscopic and voltammetric studies with ct-DNA and tRNA revealed that the complexes bind noncovalently via an electrostatic mode of binding with specificity for tRNA as compared to ct-DNA. Gel electrophoresis experiments revealed that all the complexes unwind the plasmid pBR322 DNA at low micromolar concentrations (2-9 µM) following an oxidative mechanism for Cu(ii) and Co(ii) complexes (1, 2 and 4) whereas the Zn(ii) complex (3) mediates DNA cleavage by the hydrolytic pathway. The tRNA cleavage showed concentration and time dependent activity of the complexes to promote RNA hydrolysis. Furthermore, the BSA binding ability of complexes 1-4 was monitored, which revealed that the complexes could quench the intrinsic fluorescence in a static manner. Complexes 1-4 were found to be non-toxic towards normal prostate epithelial cells, PNT2, but were potent against chemoresistant metastatic prostate cancer cells, Du145, with GI50 values ranging from 12.75-37 µM. Complexes 1 and 2 also showed cytotoxic activity against cancer stem cells having GI50 values of 14.70 and 14.90 µM, respectively. Molecular docking studies were performed with DNA and tRNA which further validated the spectroscopic analysis demonstrating the higher binding affinity of the complexes towards tRNA.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Metales Pesados/química , Neoplasias de la Próstata/patología , ARN de Transferencia/metabolismo , Agua/química , Línea Celular Tumoral , Cobalto/química , Complejos de Coordinación/metabolismo , Cobre/química , Humanos , Iminas/química , Masculino , Solubilidad , Zinc/química
15.
Pharmaceutics ; 12(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503320

RESUMEN

The synthesis, characterization and cytotoxic activity against different cancer cell lines of various mesoporous silica-based materials containing folate targeting moieties and a cytotoxic fragment based on a triphenyltin(IV) derivative have been studied. Two different mesoporous nanostructured silica systems have been used: firstly, micronic silica particles of the MSU-2 type and, secondly, mesoporous silica nanoparticles (MSNs) of about 80 nm. Both series of materials have been characterized by different methods, such as powder X-ray diffraction, X-ray fluorescence, absorption spectroscopy and microscopy. In addition, these systems have been tested against four different cancer cell lines, namely, OVCAR-3, DLD-1, A2780 and A431, in order to observe if the size of the silica-based systems and the quantity of incorporated folic acid influence their cytotoxic action. The results show that the materials are more active when the quantity of folic acid is higher, especially in those cells that overexpress folate receptors such as OVCAR-3 and DLD-1. In addition, the study of the potential modulation of the soluble folate receptor alpha (FOLR1) by treatment with the synthesized materials has been carried out using OVCAR-3, DLD-1, A2780 and A431 tumour cell lines. The results show that a relatively high concentration of folic acid functionalization of the nanostructured silica together with the incorporation of the cytotoxic tin fragment leads to an increase in the quantity of the soluble FOLR1 secreted by the tumour cells. In addition, the studies reported here show that this increase of the soluble FOLR1 occurs presumably by cutting the glycosyl-phosphatidylinositol anchor of membrane FR-α and by the release of intracellular FR-α. This study validates the potential use of a combination of mesoporous silica materials co-functionalized with folate targeting molecules and an organotin(IV) drug as a strategy for the therapeutic treatment of several cancer cells overexpressing folate receptors.

16.
J Inorg Biochem ; 207: 111051, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32371293

RESUMEN

Five new coordination polymers (CPs) constructed of aminopyridine-2-carboxylate (ampy) ligand have been synthesized and fully characterized. Three of them correspond to metal-organic chains built from the coordination of ampy to sodium and lanthanides with formulae [MNa(ampy)4]n (M = terbium (2), erbium (1) and ytterbium (3)) resembling a previously reported dysprosium material which shows anticancer activity. On another level, the reaction of Hampy with cobalt and copper ions ({[CoK(ampy)3(H2O)3](H2O)3}n (4) and [Cu(ampy)2]n (5)) lead to CPs with variable dimensionalities, which gives the opportunity of analyzing the structural properties of this new family. Lanthanide materials display solid state intense photoluminescent emissions in both the visible and near-infrared region and exhibit slow relaxation of magnetization with frequency dependence of the out-of-phase susceptibility. More interestingly, in our search for multifunctional materials, we have carried out antitumor measurements of these compounds. These multidisciplinary studies of metal complexes open up the possibility for further exploring the applications in the fields of metal-based drugs.


Asunto(s)
Aminopiridinas/química , Antineoplásicos/química , Ácidos Carboxílicos/química , Estructuras Metalorgánicas/química , Aminopiridinas/farmacología , Animales , Antineoplásicos/farmacología , Ácidos Carboxílicos/farmacología , Proliferación Celular/efectos de los fármacos , Cobalto/química , Complejos de Coordinación/química , Cobre/química , Cristalografía por Rayos X/métodos , Células HT29 , Células Hep G2 , Humanos , Elementos de la Serie de los Lantanoides/química , Ligandos , Luminiscencia , Magnetismo , Estructuras Metalorgánicas/farmacología , Ratones , Modelos Moleculares , Polímeros/química
17.
Cancers (Basel) ; 12(1)2020 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940937

RESUMEN

Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.

18.
Dalton Trans ; 48(18): 5940-5951, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30209497

RESUMEN

A series of nanomaterials based on mesoporous silica have been synthesised and functionalised with a photoactive polypyridyl ruthenium(ii) complex, namely [Ru(bipy)2-dppz-7-hydroxymethyl][PF6]2 (bipy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine), by various methods. The functionalisation reactions were based on the covalent binding to different ligands attached to the pores of the mesoporous nanoparticles and a simple physisorption using polyamino-functionalised mesoporous silica nanoparticles. The resulting nanostructured systems have been characterised by XRD, XRF, BET, SEM and TEM, observing the incorporation of the metallodrug onto the nanostructured silica in a different way depending on the synthetic method used in the loading reactions. In our studies, we have also observed that functionalisation with the metallodrug causes changes in the structural and textural features of the materials. The phototherapeutic activity of the ruthenium-functionalised materials in HeLa cervical cancer cells has been tested and the preliminary results are presented herein.


Asunto(s)
Complejos de Coordinación/química , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Rutenio/química , Dióxido de Silicio/química , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Células HeLa , Humanos , Ligandos , Imagen Óptica/métodos , Tamaño de la Partícula , Fotoquimioterapia/métodos , Porosidad , Propiedades de Superficie
19.
ACS Omega ; 3(10): 13343-13353, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411036

RESUMEN

A series of multinuclear heterometallic Cu-Zn complexes of molecular formula [(CuL)2Zn(dca)2] (1), [(CuL)2Zn(NO3)2] (2), [(CuL)2Zn2(Cl)4] (3), and [(CuL)2Zn2(NO2)4] (4) have been synthesized by reacting [CuL] as a "metalloligand (ML)" (where HL = N,N'-bis(5-chloro-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine) and by varying the anions or coligands using the same molar ratios of the reactants. All of the four products including the ML have been characterized by infrared and UV-vis spectroscopies and elemental and single-crystal X-ray diffraction analyses. By varying the anions, different structures and topologies are obtained which we have tried to rationalize by means of thorough density functional theory calculations. All of the complexes (1-4) have now been applied for several biological investigations to verify their therapeutic worth. First, their cytotoxicity properties were assessed against HeLa human cervical carcinoma along with the determination of IC50 values. The study was extended with extensive DNA and protein binding experiments followed by detailed fluorescence quenching study with suitable reagents to comprehend the mechanistic pathway. From all of these biological studies, it has been found that all of these heterometallic complexes show more than a few fold improvement of their therapeutic values as compared to the similar homometallic ones probably because of the simultaneous synergic effect of copper and zinc. Among all of the four heterometallic complexes, complex 3 exhibits highest binding constants and IC50 values suggest for their better interaction toward the biological targets and hence have better clinical importance.

20.
Dalton Trans ; 47(35): 12284-12299, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30112529

RESUMEN

The mesoporous silica-based material SBA-15 (Santa Barbara Amorphous-15) has been modified with the aminodiol ligand 3-[bis(2-hydroxyethyl)amino]propyltriethoxysilane (PADOH) to give the corresponding material SBA-PADOH. Subsequent functionalization with a diorganotin(iv) compound, SnPh2Cl2 (1), and with two titanocene derivatives, TiCp2Cl2 ([Ti(η5-C5H5)2Cl2] (2)) and TiCpCpPhNfCl2 ([Ti(η5-C5H5)(η5-C5H4CHPhNf)Cl2] (3) (Ph = C6H5; Nf = C10H7)), gave the materials SBA-PADO-SnPh2 (M1), SBA-PADO-TiCp2 (M2) and SBA-PADO-TiCpCp* (M3), respectively. SBA-PADOH and M1-M3 have been characterized by various techniques such as FT-IR, XRD, XRF, solid-state NMR, nitrogen adsorption-desorption isotherms, electrochemical methods, SEM and TEM, observing that the functionalization has mainly taken place inside the pores of the corresponding porous system. In addition, mechanistic aspects of the apoptosis triggered by the synthesized materials have been studied in vitro in tumour cell lines derived from three distinct types of cancer in order to elucidate their growth inhibition and interference with the expression of tumour necrosis factor alfa (TNF-α) and the first apoptosis signal receptor (Fas or tumour necrosis factor receptor 6). It was observed that the antiproliferative and proapoptotic capacity of the materials depends on their functionalization with the different cytotoxic prodrugs (organotin or titanocene derivatives). The study shows that M1-M3 influence the metabolic activity of the tumour cells and modulate the apoptotic pathways by different mechanisms, according to the active compound inside the material.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Nanoestructuras/química , Compuestos Organoplatinos/farmacología , Dióxido de Silicio/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Técnicas Electroquímicas , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organoplatinos/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA