Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
ChemMedChem ; 19(5): e202300568, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214500

RESUMEN

The MexXY-OprM multidrug efflux pump (EP) in aminoglycosides resistant Pseudomonas aeruginosa is one of the major resistance mechanisms, which is often overexpressed in strains isolated from pulmonary chronic disease such as cystic fibrosis.[1-3] In this research, we focused on the design of potential efflux pumps inhibitors, targeting MexY, the inner membrane component, in an allosteric site. Berberine[4] has been considered as lead molecule since we previously demonstrated its effectiveness in targeting MexY in laboratory reference strains.[5,6] Since this protein is often present in polymorphic variants in clinical strains, we sequenced and modeled all the mutated forms and we synthesized and evaluated by computational techniques, some berberine derivatives carrying an aromatic functionalization in its 13-C ring position. These compounds were tested in vitro against clinical P. aeruginosa strains for antimicrobial and antibiofilm activity. In conclusion, the results demonstrated the importance of the aromatic moiety functionalization in exerting the EP inhibitory activity in synergy with the aminoglycoside tobramycin. More, we found that aminoacidic composition of MexY in different strains must be considered for predicting potential binding site and affects the different activity of berberine derivatives. Finally, the antibiofilm effect of these new EPIs is promising, particularly for o-CH3-berberine derivative.


Asunto(s)
Berberina , Pseudomonas aeruginosa , Berberina/farmacología , Transporte Biológico , Antibacterianos/farmacología , Sitio Alostérico
2.
Mech Ageing Dev ; 216: 111876, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802485

RESUMEN

Elevation of cardiac damage biomarkers is associated with adverse clinical outcomes and increased mortality in COVID-19 patients. This study assessed the association of admission serum levels of sST2 and H-FABP with in-hospital mortality in 191 geriatric patients (median age 86 yrs., IQR 82-91 yrs.) with COVID-19 and available measures of hs-cTnT and NT-proBNP at admission. Cox proportional hazards models were utilized to predict in-hospital mortality, considering clinical/biochemical confounders as covariates. A composite cardiac score was calculated to improve predictive accuracy. Patients deceased during their hospital stay (26%) exhibited higher levels of all biomarkers, which demonstrated good discrimination for in-hospital mortality. Addition of sST2 and H-FABP significantly improved the discriminatory power of hs-cTnT and NT-proBNP. The composite cardiac score (AUC=0.866) further enhanced the predictive accuracy. Crude and adjusted Cox regressions models revealed that both sST2 and H-FABP were independently associated with in-hospital mortality (HR for sST2 ≥129 ng/mL, 4.32 [1.48-12.59]; HR for H-FABP ≥18 ng/mL, 7.70 [2.12-28.01]). The composite cardiac score also independently correlated with in-hospital mortality (HR for 1-unit increase, 1.47 [1.14-1.90]). In older patients with COVID-19, sST2 and H-FABP demonstrated prognostic value, improving the predictive accuracy of the routinely assessed biomarkers hs-cTnT and NT-proBNP.


Asunto(s)
COVID-19 , Anciano , Anciano de 80 o más Años , Humanos , Biomarcadores , Proteína 3 de Unión a Ácidos Grasos , Mortalidad Hospitalaria , Fragmentos de Péptidos , Pronóstico
3.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298165

RESUMEN

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Asunto(s)
Crocus , Diabetes Mellitus , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Crocus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , alfa-Amilasas Pancreáticas/metabolismo , Células CACO-2 , Simulación del Acoplamiento Molecular , Glucosa/metabolismo , Extractos Vegetales/química
4.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050002

RESUMEN

Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Flavonas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Flavonas/farmacología , Flavonas/uso terapéutico , Apoptosis , Proliferación Celular , Células A549
5.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047738

RESUMEN

The demand for organic UV filters as active components in sunscreen products has rapidly risen over the last century, as people have gradually realized the hazards of overexposure to UV radiation. Their extensive usage has resulted in their ubiquitous presence in different aquatic matrices, representing a potential threat to living organisms. In this context, the need to replace classic UV filters such as octyl methoxycinnamate (OMC), one of the most popular UV filters reported to be a potential pollutant of aquatic ecosystems, with more environmentally friendly ones has emerged. In this study, using zebrafish, the first in vivo results regarding the effect of exposure to tempol-methoxycinnamate (TMC), a derivative of OMC, are reported. A comparative study between TMC and OMC was performed, analyzing embryos exposed to similar TMC and OMC concentrations, focusing on morphological and molecular changes. While both compounds seemed not to affect hatching and embryogenesis, OMC exposure caused an increase in endoplasmic reticulum (ER) stress response genes, according to increased eif2ak3, ddit3, nrf2, and nkap mRNA levels and in oxidative stress genes, as observed from modulation of the sod1, sod2, gpr, and trx mRNA levels. On the contrary, exposure to TMC led to reduced toxicity, probably due to the presence of the nitroxide group in the compound's molecular structure responsible for antioxidant activity. In addition, both UV filters were docked with estrogen and androgen receptors where they acted differently, in agreement with the molecular analysis that showed a hormone-like activity for OMC but not for TMC. Overall, the results indicate the suitability of TMC as an alternative, environmentally safer UV filter.


Asunto(s)
Rayos Ultravioleta , Pez Cebra , Animales , Rayos Ultravioleta/efectos adversos , Ecosistema , Protectores Solares/farmacología , Protectores Solares/química , ARN Mensajero , Cinamatos/farmacología , Cinamatos/química
6.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047803

RESUMEN

Herpesviridae reactivation such as cytomegalovirus (CMV) has been described in severe COVID-19 (COronaVIrusDisease-2019). This study aimed to understand if CMV reactivation in older COVID-19 patients is associated with increased inflammation and in-hospital mortality. In an observational single-center cohort study, 156 geriatric COVID-19 patients were screened for CMV reactivation by RT-PCR. Participants underwent a comprehensive clinical investigation that included medical history, functional evaluation, laboratory tests and cytokine assays (TNF-α, IFN-α, IL-6, IL-10) at hospital admission. In 19 (12.2%) of 156 COVID-19 patients, CMV reactivation was detected. Multivariate Cox regression models showed that in-hospital mortality significantly increased among CMV positive patients younger than 87 years (HR: 9.94, 95% CI: 1.66-59.50). Other factors associated with in-hospital mortality were C-reactive protein (HR: 1.17, 95% CI: 1.05-1.30), neutrophil count (HR: 1.20, 95% CI: 1.01-1.42) and clinical frailty scale (HR:1.54, 95% CI: 1.04-2.28). In patients older than 87 years, neutrophil count (HR: 1.13, 95% CI: 1.05-1.21) and age (HR: 1.15, 95% CI: 1.01-1.31) were independently associated with in-hospital mortality. CMV reactivation was also correlated with increased IFN-α and TNF-α serum levels, but not with IL-6 and IL-10 serum changes. In conclusion, CMV reactivation was an independent risk factor for in-hospital mortality in COVID-19 patients younger than 87 years old, but not in nonagenarians.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Anciano de 80 o más Años , Humanos , Anciano , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/complicaciones , Interleucina-10 , Estudios de Cohortes , Interleucina-6 , Factor de Necrosis Tumoral alfa , COVID-19/complicaciones , Activación Viral , Estudios Retrospectivos
7.
J Biomol Struct Dyn ; 41(14): 6492-6501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968630

RESUMEN

The discovery of mutations within the kinase domain of the epidermal growth factor receptor (EGFR) gene has enabled a new era of targeted therapy in non-small cell lung cancer (NSCLC). Drugs belonging to the family of tyrosine kinase inhibitors (TKIs) are designed to bind ATP binding cleft, anyway, the occurrence of aminoacidic mutations decreases the effectiveness of the antitumoral treatment. Despite many efforts has been already made, the impact of the mutations on conformation and stability of EGFR-ATP complexes is still not fully understood. Therefore, we investigated the effect of mutations that leads to changes in Michaelis-Menten constant (Km) using dynamic docking simulations. We focused on six different EGFR forms in relation to different mutation states, then we found a good correlation between the calculated ATP affinities and Km values. Moreover, since dynamic switching of TK-EGFR from the inactive towards the active state is known to regulate the kinase activity, we observed that ATP induces the inwards movement of the αC-helix with the Lys745 close to Glu762 in all cases. This means that ATP binding should be the first step in promoting the conformational shift to the active state. Finally, we highlighted for the first time the key contribution of water hydrogen bond and water-bridge networks in the modulation of ATP affinity. The identified mutant-specific ATP binding patterns and conformational features could be much useful to guide cancer therapy and develop more personalized medicine. Communicated by Ramaswamy H. Sarma.

8.
Mar Drugs ; 22(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276640

RESUMEN

One of the major threats to skin aging and the risk of developing skin cancer is excessive exposure to the sun's ultraviolet radiation (UVR). The use of sunscreens containing different synthetic, organic, and inorganic UVR filters is one of the most widespread defensive measures. However, increasing evidence suggests that some of these compounds are potentially eco-toxic, causing subtle damage to the environment and to marine ecosystems. Resorting to natural products produced in a wide range of marine species to counteract UVR-mediated damage could be an alternative strategy. The present work investigates marine-inspired thiol compounds, derivatives of ovothiol A, isolated from marine invertebrates and known to exhibit unique antioxidant properties. However, their potential use as photoprotective molecules for biocompatible sunscreens and anti-photo aging formulations has not yet been investigated. Here, we report on the UVR absorption properties, photostability, and in vitro UVA shielding activities of two synthetic ovothiol derivatives, 5-thiohistidine and iso-ovothiol A, by spectrophotometric and fluorimetric analysis. We found that the UVA properties of these compounds increase upon exposure to UVA and that their absorption activity is able to screen UVA rays, thus reducing the oxidative damage induced to proteins and lipids. The results of this work demonstrate that these novel marine-inspired compounds could represent an alternative eco-friendly approach for UVR skin protection.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Protectores Solares/farmacología , Ecosistema , Piel , Compuestos de Sulfhidrilo
9.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358501

RESUMEN

Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-ß-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.

10.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455951

RESUMEN

A major player in the homeostatic response to hypoxia is the hypoxia-inducible factor (HIF)-1 that transactivates a number of genes involved in neovessel proliferation in response to low oxygen tension. In the retina, hypoxia overstimulates ß-adrenoceptors (ß-ARs) which play a key role in the formation of pathogenic blood vessels. Among ß-ARs, ß3-AR expression is increased in proliferating vessels in concomitance with increased levels of HIF-1α and vascular endothelial growth factor (VEGF). Whether, similarly to VEGF, hypoxia-induced ß3-AR upregulation is driven by HIF-1 is still unknown. We used the mouse model of oxygen-induced retinopathy (OIR), an acknowledged model of retinal angiogenesis, to verify the hypothesis of ß3-AR transcriptional regulation by HIF-1. Investigation of ß3-AR regulation over OIR progression revealed that the expression profile of ß3-AR depends on oxygen tension, similar to VEGF. The additional evidence that HIF-1α stabilization decouples ß3-AR expression from oxygen levels further indicates that HIF-1 regulates the expression of the ß3-AR gene in the retina. Bioinformatics predicted the presence of six HIF-1 binding sites (HBS #1-6) upstream and inside the mouse ß3-AR gene. Among these, HBS #1 has been identified as the most suitable HBS for HIF-1 binding. Chromatin immunoprecipitation-qPCR demonstrated an effective binding of HIF-1 to HBS #1 indicating the existence of a physical interaction between HIF-1 and the ß3-AR gene. The additional finding that ß3-AR gene expression is concomitantly activated indicates the possibility that HIF-1 transactivates the ß3-AR gene. Our results are indicative of ß3-AR involvement in HIF-1-mediated response to hypoxia.


Asunto(s)
Factor 1 Inducible por Hipoxia , Receptores Adrenérgicos beta 3 , Enfermedades de la Retina , Factor A de Crecimiento Endotelial Vascular , Animales , Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34736221

RESUMEN

The use of glyceryl monooleate (GMO)-based nanoparticles has not yet been explored in overcoming the low bioavailability of Epigallocatechin-3-gallate (EGCG), a green tea polyphenol with a known anticancer activity. Since the inclusion of a guest molecule can affect the curvature and the supramolecular structure of fully hydrated GMO-based phase, the phase behavior of bulk and dispersed liquid crystalline systems containing EGCG were explored by Small Angle Neutron Scattering and X-Ray Diffraction experiments. Molecular Dynamic Simulations showed how the interaction of EGCG with polar heads of GMO strongly affects the curvature and packing of GMO phase. The EGCG encapsulation efficiency was determined in the nanodispersions and their size studied by Dynamic Light Scattering and Atomic Force Microscopy. A nanodispersed formulation has been optimized with a cytotoxic effect more than additive of GMO and EGCG.


Asunto(s)
Catequina , Catequina/análogos & derivados , Glicéridos ,
12.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769263

RESUMEN

The epidermal growth factor receptor (EGFR) is one of the most well-studied molecular targets in non-small cell lung cancer (NSCLC) and tyrosine kinase inhibitors have been shown to be effective in the treatment of advanced NSCLC. Nevertheless, the efficacy of tyrosine kinase inhibitors could be compromised by additional mutations in EGFR and compensatory activations of other pathways. Epigallocatechin-3-gallate (EGCG), the main bioactive molecule in green tea, acts as a tyrosine kinase inhibitor toward cancer cells overexpressing EGFR (wild-type). However, little information has been reported on the effect of EGCG on EGFR with activating mutations. In this study, we evaluated the ability of EGCG to inhibit EGFR signaling activation in three different NSCLC cell lines containing wild-type EGFR or EGFR with additional mutations. The effect on proliferation, apoptosis, migration, and vinculin expression was then studied. Overall, our results demonstrate that EGCG polyphenol inhibits cell proliferation and migration in NSCLC cell lines, although with different efficacy and mechanisms. These data may be of interest for an evaluation of the use of EGCG as an adjunct to NSCLC therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Catequina/análogos & derivados , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Catequina/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética , Transducción de Señal/genética
13.
J Nat Prod ; 84(4): 993-1001, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33848161

RESUMEN

The eradication of recurrent Pseudomonas aeruginosa (PA) lung infection in cystic fibrosis (CF) patients may be hampered by the development of persistent bacterial forms, which can tolerate antibiotics through efflux pump overexpression. After demonstrating the efflux pump inhibitory effect of the alkaloid berberine on the PA MexXY-OprM efflux pump, in this study, we tested its ability (80/320 µg/mL) to enhance tobramycin (20xMIC/1000xMIC) activity against PA planktonic/biofilm cultures. Preliminary investigations of the involvement of MexY in PA tolerance to tobramycin treatment, performed on the isogenic pair PA K767 (wild type)/K1525 (ΔmexY) growing in planktonic and biofilm cultures, demonstrated that the ΔmexY mutant K1525 produced a lower (100 and 10 000 times, respectively) amount of tolerant cells than that of the wild type. Next, we grew broth cultures of PAO1, PA14, and 20 PA clinical isolates (of which 13 were from CF patients) in the presence of 20xMIC tobramycin with and without berberine 80 µg/mL. Accordingly, most strains showed a greater (from 10- to 1000-fold) tolerance reduction in the presence of berberine. These findings highlight the involvement of the MexXY-OprM system in the tobramycin tolerance of PA and suggest that berberine may be used in new valuable therapeutic combinations to counteract persister survival.


Asunto(s)
Berberina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Bacterianas , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Cuaternaria de Proteína , Infecciones por Pseudomonas/tratamiento farmacológico , Tobramicina/farmacología
14.
J Trace Elem Med Biol ; 66: 126746, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33756184

RESUMEN

BACKGROUND: Cadmium is considered the seventh most toxic heavy metal as per ATSDR ranking but its mechanism of toxicity is debated. Recently, we evaluated the effects of this metal on the erythrocyte of teleost fish (Oncorhynchus mykiss) leading us to hypothesize that the pro-oxidant activity of cadmium is not linked to mitochondria but more likely to haemoglobin. In this context, the main aim of this work was to detect the ability of Cd to induce structural perturbation in haemoproteins that present different structures and thus different functional properties and to identify what sites of interaction are mainly involved. METHODS: The effect of Cd on the structural destabilization of the different haemoproteins was followed spectrophometrically through their precipitation. In addition, the sites of interaction between the different haemoproteins and bivalent cadmium ions were identified by MIB server followed by molecular docking/molecular dynamics simulations both in the dimeric and tetrameric associations. RESULTS: Cadmium does not influence the autoxidation rate of Mb, HbA and trout HbI. However, the presence of this metal accelerates the precipitation process in trout HbIV in a dose-dependent manner. Moreover, the presence of 1-10-50-250-500-1000 µM GSH, a chelating agent, reduces the ability of cadmium to accelerate the denaturation process although it is not able to completely prevent it. In order to explain the experimental results, a computational investigations was carried out to identify the cadmium cation affinity for the studied haemoglobins and myoglobin, both in their dimeric and tetrameric forms. As a result, the highest affinity cadmium binding sites for fish HbIV are located at the interface between tetramer-tetramer association, indicating that the cation can assist supramolecular protein aggregations and induce complex precipitation. For mammalian Hb, Mb and fish HbI computational investigation did not detect any site where Cd could to induce such aggregation, in line with the experimental results. CONCLUSION: The present study provides new information on the mechanisms of toxicity of cadmium by specific interaction with trout O. mykiss haemoglobin component.


Asunto(s)
Cadmio/química , Proteínas de Peces/química , Hemoglobinas/química , Compuestos de Sulfhidrilo/química , Animales , Intoxicación por Cadmio , Simulación por Computador , Eritrocitos , Humanos , Mitocondrias/química , Simulación del Acoplamiento Molecular , Oncorhynchus mykiss , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Especies Reactivas de Oxígeno/química , Contaminantes Químicos del Agua
15.
Mar Environ Res ; 162: 105150, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32992223

RESUMEN

Cigarette butts are the most common form of litter in the world and their environmental impact is related to both persistence and potential toxic effects for chemical composition. The objective of this study was to assess the acute toxicity (LC50-48 h) of human-smoked cigarette butts leachate on 3 cultured genera of benthic foraminifera: the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The specimens were exposed to 16, 8, 4, 2, and 1 cigarette butts/L concentrations that prove to be acutely toxic to all taxa. Starting from 4 cigarette butts/L, both calcareous genera showed shell decalcification, and death of almost all the individuals, except for the more resistant agglutinated species. These results suggest the potential harmfulness of cigarette butts leachate related to pH reduction and release of toxic substances, in particular nicotine, which leads to physiology alteration and in many cases cellular death.


Asunto(s)
Foraminíferos , Productos de Tabaco , Humanos , Fumar
16.
Pharmacol Res ; 161: 105123, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32822867

RESUMEN

Breast cancer (BC) is the most common cancer in women and, among different BC subtypes, triple negative (TN) and human epidermal growth factor receptor 2 (HER2)-positive BCs have the worst prognosis. In this study, we investigated the anticancer activity of the root ethanolic and hexane extracts from Lithospermum erythrorhizon, a traditional Chinese herbal medicine known also as tzu ts'ao or tzu-ken, against in vitro and in vivo models of TNBC and HER2-positive BC. Treatment with L. erythrorhizon root extracts resulted in a dose-dependent inhibition of BC cell viability and in a significant reduction of the growth of TNBC cells transplanted in syngeneic mice. Acetylshikonin, a naphthoquinone, was identified as the main bioactive component in extracts and was responsible for the observed antitumor activity, being able to decrease BC cell viability and to interfere with autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Acetylshikonin anticancer effect depends on its ability to act as a potent inhibitor of dihydrofolate reductase (DHFR), to down-regulate key mediators governing cancer growth and progression, such as HER2, Src and STAT3, and to induce apoptosis by caspase-3 activation. The accumulation of acetylshikonin in blood samples as well as in brain, kidney, liver and tumor tissues was also investigated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) highlighting that L. erythrorhizon treatment is effective in delivering the active compound into the target tissues. These results provide evidence that L. erythrorhizon extract and in particular its main component acetylshikonin are effective against aggressive BC subtypes and reveal new acetylshikonin mechanisms of action.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/prevención & control , Antagonistas del Ácido Fólico/farmacología , Lithospermum , Receptor ErbB-2/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Antraquinonas/aislamiento & purificación , Antraquinonas/farmacocinética , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Antagonistas del Ácido Fólico/aislamiento & purificación , Antagonistas del Ácido Fólico/farmacocinética , Humanos , Lithospermum/química , Ratones Transgénicos , Raíces de Plantas , Receptor ErbB-2/genética , Transducción de Señal , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Antibiotics (Basel) ; 9(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664334

RESUMEN

The recurrence of Pseudomonas aeruginosa (PA) biofilm infections is a major issue in cystic fibrosis (CF) patients. A pivotal role is played by the presence of antibiotic-unresponsive persisters and/or viable but non-culturable (VBNC) forms, whose development might be favored by subinhibitory antibiotic concentrations. The involvement of tobramycin and ciprofloxacin, widely used to treat CF PA lung infections, in the abundance of VBNC cells was investigated in PA biofilms models. In vitro biofilms of the laboratory strain PAO1-N and the clinical strain C24 were developed and starved by subculture for 170 days in a non-nutrient (NN) broth, unsupplemented or supplemented with one-quarter minimal inhibitory concentration (MIC) of tobramycin or ciprofloxacin. VBNC cells abundance, estimated as the difference between total live (detected by qPCR and flow cytometry) and colony forming unit (CFU) counts, showed a strain- and drug-specific pattern. A greater and earlier abundance of VBNC PAO1-N cells was detected in all conditions. Exposure of the C24 strain to NN and NN + ciprofloxacin induced only a transient VBNC subpopulation, which was more abundant and stable until the end of the experiment in tobramycin-exposed biofilms. The same response to tobramycin was observed in the PAO1-N strain. These findings suggest that low tobramycin concentrations might contribute to PA infection recurrence by favoring the development of VBNC forms.

18.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138321

RESUMEN

Non-small cell lung cancer (NSCLC) represents a difficult condition to treat, due to epidermal growth factor receptor (EGFR) kinase domain mutations, which lead to ligand-independent phosphorylation. Deletion of five amino acids (ELREA) in exon 19 and mutational change from leucine to arginine at position 858 (L858R) are responsible for tyrosine kinase domain aberrant activation. These two common types of EGFR-mutated forms are clinically associated with high response with Tyrosine Kinase Inhibitors (TKI); however, the secondary T790M mutation within the Tyrosine Kinase Domain (TKD) determines a resistance to these EGFR-TKIs. Using molecular dynamic simulation (MD), the present study investigated the architectural changes of wild-type and mutants EGFR's kinase domains in order to detect any conformational differences that could be associated with a constitutively activated state and thus to evaluate the differences between the wild-type and its mutated forms. In addition, in order to evaluate to which extent the EGFR mutations affect its inhibition, Epigallocatechin 3-Gallate (EGCG) and Erlotinib (Erl), known EGFR-TKI, were included in our study. Their binding modes with the EGFR-TK domain were elucidated and the binding differences between EGFR wild-type and the mutated forms were evidenced. The aminoacids mutations directly influence the binding affinity of these two inhibitors, resulting in a different efficacy of Erl and EGCG inhibition. In particular, for the T790M/L858R EGFR, the binding modes of studied inhibitors were compromised by aminoacidic substitution confirming the experimental findings. These results may be useful for novel drug design strategies targeting the dimerization domain of the EGFR mutated forms, thus preventing receptor activation.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Catequina/análogos & derivados , Receptores ErbB/química , Receptores ErbB/metabolismo , Simulación del Acoplamiento Molecular/métodos , Inhibidores de Proteínas Quinasas/farmacología , Catequina/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína
19.
Nanomaterials (Basel) ; 10(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877789

RESUMEN

Resveratrol (RES) is a stilbenoid polyphenol with interesting antitumor activity compromised by its poor solubility and bioavailability; thus, new approaches are necessary to improve its therapeutic effectiveness. In the present study, bovine serum albumin coated layered double hydroxide (LDH-BSA) was employed to encapsulate RES in order to overcome the above-mentioned usage limits. To evaluate the feasibility of neutral RES complexation with cationic LDH, we carried out molecular dynamics simulation in order to predict its structure and stability. In the supramolecular complex formed with LDH, RES disposes itself in the interlamellar region of LDH where it is stabilized by intermolecular interactions. The physico-chemical characteristics of the resulting nanocomplexes were studied by X-ray powder diffraction, transmission electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy. The encapsulation efficiency and drug release studies were also performed. The combined experimental and computational approach were highly effective in giving insight into the interaction mode of the neutral RES with the charged LDH. Finally, the nanohybrid's anticancer ability was evaluated in human lung cancer cell line (A549) resulting in higher activity with respect to bare RES. Overall, the results showed that the nanocomposites are suitable for biomedical applications as delivery agents of RES.

20.
FASEB J ; 33(12): 13228-13240, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560576

RESUMEN

tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfoproteínas/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Transgénicos , Fosfoproteínas/genética , ARN de Transferencia de Ácido Glutámico/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA