Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
JACS Au ; 4(5): 1786-1800, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818079

RESUMEN

The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions. Following a primary screening in CSC models, we identified the novel compound UCM-13369 (4b) whose cytotoxicity was mediated by NPM1. This protein is one of the most frequent mutations of AML, and NPM1-mutated AML is recognized by the WHO as a distinct hematopoietic malignancy. UCM-13369 inhibits NPM1 expression, downregulates the pathway associated with mutant NPM1 C+, and specifically recognizes the C-end DNA-binding domain of NPM1 C+, avoiding the nucleus-cytoplasm translocation involved in the AML tumorological process. The new NPM1 inhibitor triggers apoptosis in AML cell lines and primary cells from AML patients and reduces tumor infiltration in a mouse model of AML with NPM1 C+ mutation. The disclosed phenotype-guided discovery of UCM-13369, a novel small molecule inspired on microbiota metabolites, confirms that CSC death induced by NPM1 inhibition represents a promising therapeutic opportunity for NPM1-mutated AML, a high-mortality disease.

2.
JCI Insight ; 9(9)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602775

RESUMEN

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Asunto(s)
Diterpenos , Compuestos Epoxi , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Fenantrenos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Animales , Ratones , Trasplante de Células Madre Hematopoyéticas/métodos , Diterpenos/farmacología , Diterpenos/uso terapéutico , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Humanos , Trasplante Homólogo , Femenino , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Modelos Animales de Enfermedad , Efecto Injerto vs Leucemia/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino
3.
Commun Biol ; 6(1): 1299, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129580

RESUMEN

The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Inmunoterapia/métodos , Linfocitos T , Anticuerpos Monoclonales/uso terapéutico , Receptores de Muerte Celular , Proteína de Dominio de Muerte Asociada a Fas
4.
Anaerobe ; 84: 102784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806638

RESUMEN

INTRODUCTION: Bacteroides fragilis (B. fragilis) is considered to act in an anti-inflammatory manner on the intestinal tract. On the contrary, enterotoxigenic B. fragilis (ETBF), a subtype of B. fragilis, produces an enterotoxin (BFT; B. fragilis toxin), leading to asymptomatic chronic infections and colonic tumor formation. However, the impact of B. fragilis and ETBF on the clinical outcome of colorectal cancer (CRC) remains unclear. We aim to assess whether their presence affects the outcome in patients with CRC after curative resection. METHODS: We obtained 197 pairs of matched formalin-fixed paraffin-embedded samples from cancerous and adjacent non-cancerous tissues of patients with pathological stage (pstage) II and III CRC after curative resection. The presence of B. fragilis and ETBF were estimated using real-time polymerase chain reaction, and recurrence-free survival (RFS) and overall survival (OS) of the patients were analyzed. RESULTS: 16S rRNA for B. fragilis and bft DNA were detected in 120 (60.9%) and 12 (6.1%) of the 197 patients, respectively. B. fragilis-positive patients had better RFS than B. fragilis-negative patients, although that was not statistically significant. In subgroup analysis, better outcomes on RFS were observed in the presence of B. fragilis in pstage II and left-sided CRC. The association of B. fragilis positivity on OS was accentuated in the depth of T4 subgroup. No significant differences were observed in RFS and OS between ETBF and non-toxigenic B. fragilis. CONCLUSIONS: Our findings suggest that the presence of B. fragilis is associated with better outcomes in patients with pstage II and III CRC after curative resection.


Asunto(s)
Infecciones Bacterianas , Infecciones por Bacteroides , Neoplasias Colorrectales , Humanos , Bacteroides fragilis/genética , Relevancia Clínica , ARN Ribosómico 16S , Pronóstico , Infecciones por Bacteroides/diagnóstico , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Infecciones Bacterianas/complicaciones , Metaloendopeptidasas/genética
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37762011

RESUMEN

Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.


Asunto(s)
Neoplasias , Humanos , Diferenciación Celular , Proliferación Celular , Señales (Psicología) , Canales Iónicos
8.
Front Immunol ; 14: 1188818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342332

RESUMEN

Background: CART therapy has produced a paradigm shift in the treatment of relapsing FL patients. Strategies to optimize disease surveillance after these therapies are increasingly necessary. This study explores the potential value of ctDNA monitoring with an innovative signature of personalized trackable mutations. Method: Eleven FL patients treated with anti-CD19 CAR T-cell therapy were included. One did not respond and was excluded. Genomic profiling was performed before starting lymphodepleting chemotherapy to identify somatic mutations suitable for LiqBio-MRD monitoring. The dynamics of the baseline mutations (4.5 per patient) were further analyzed on 59 cfDNA follow-up samples. PET/CT examinations were performed on days +90, +180, +365, and every six months until disease progression or death. Results: After a median follow-up of 36 months, all patients achieved a CR as the best response. Two patients progressed. The most frequently mutated genes were CREBBP, KMT2D and EP300. Simultaneous analysis of ctDNA and PET/CT was available for 18 time-points. When PET/CT was positive, two out of four ctDNA samples were LiqBio-MRD negative. These two negative samples corresponded to women with a unique mesenteric mass in two evaluations and never relapsed. Meanwhile, 14 PET/CT negative images were mutation-free based on our LiqBio-MRD analysis (100%). None of the patients had a negative LiqBio-MRD test by day +7. Interestingly, all durably responding patients had undetectable ctDNA at or around three months after infusion. Two patients presented discordant results by PET/CT and ctDNA levels. No progression was confirmed in these cases. All the progressing patients were LiqBio-MRD positive before progression. Conclusion: This is a proof-of-principle for using ctDNA to monitor response to CAR T-cell therapy in FL. Our results confirm that a non-invasive liquid biopsy MRD analysis may correlate with response and could be used to monitor response. Harmonized definitions of ctDNA molecular response and pinpointing the optimal timing for assessing ctDNA responses are necessary for this setting. If using ctDNA analysis, we suggest restricting follow-up PET/CT in CR patients to a clinical suspicion of relapse, to avoid false-positive results.


Asunto(s)
ADN Tumoral Circulante , Linfoma Folicular , Receptores Quiméricos de Antígenos , Humanos , Femenino , ADN Tumoral Circulante/genética , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva , Tomografía Computarizada por Tomografía de Emisión de Positrones , Recurrencia Local de Neoplasia , Tratamiento Basado en Trasplante de Células y Tejidos
9.
Leukemia ; 37(3): 659-669, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596983

RESUMEN

In the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10-4 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients. Positive LiqBio-MRD at first-line therapy correlated with a higher risk of progression both at the interim evaluation (HRINT 11.0, 95% CI 2.10-57.7, p = 0.005) and at the end of treatment (HREOT, HR 19.1, 95% CI 4.10-89.4, p < 0.001). Similar results were observed by PET/CT Deauville score, with a median PFS of 19 months vs. NR (p < 0.001) at the interim and 13 months vs. NR (p < 0.001) at EOT. LiqBio-MRD and PET/CT combined identified the patients that progressed in less than two years with 88% sensitivity and 100% specificity. Our results demonstrate that LiqBio-MRD is a robust and non-invasive approach, complementary to metabolic imaging, for identifying FL patients at high risk of failure during the treatment and should be considered in future response-adapted clinical trials.


Asunto(s)
Linfoma Folicular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Linfoma Folicular/patología , Biomarcadores , Biopsia Líquida , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Cancers (Basel) ; 15(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36672481

RESUMEN

For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM.

12.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076951

RESUMEN

Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.


Asunto(s)
Neoplasias Hematológicas , Leucemia , Linfoma , Neoplasias Hematológicas/patología , Humanos , Linfoma/genética , ARN no Traducido/uso terapéutico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Andes Pediatr ; 93(5): 688-698, 2022 Oct.
Artículo en Español | MEDLINE | ID: mdl-37906889

RESUMEN

The healthy newborn (NB) experiences physiological weight loss in her/his first days of life. Identi fying normal weight loss in this period is relevant since it allows the clinician to make decisions in relation to the need to supplement breastfeeding. OBJECTIVES: To determine the curves that graph the weight loss experienced by healthy newborns exclusively breastfed during the first 48 hours after birth. PATIENTS AND METHOD: Retrospective and analytical descriptive study in healthy full-term NBs during their stay in the nursery, exclusively breastfed, and with mixed feeding. Weights were recor ded at birth and on the first and second day of life. A quadratic polynomial was used to model the relative weights. The percentiles of the variations in weight loss were estimated. RESULTS: The sample consists of 4331 NBs with an average gestational age of 38.84 weeks. Of these, 56.45% were vaginal deliveries and 43.55% cesarean sections. The distribution by sex was 49.37% male and 50.63% fema le. Regarding adequacy, 82.96% were adequate for gestational age, 6.33% were small for gestational age, and 10.71% were large for gestational age. The greatest weight loss was observed in the first 12 hours of life. CONCLUSIONS: A weight loss graph is obtained for the first 48 hours of life, representing the weight loss per hour for healthy term NB exclusively breastfed. These curves can be used as a decision-making tool to categorize the weight loss of the NB and help in decision making regarding the indication to add artificial feeding.


Asunto(s)
Lactancia Materna , Leche Humana , Embarazo , Femenino , Humanos , Recién Nacido , Masculino , Niño , Lactante , Estudios Retrospectivos , Pérdida de Peso/fisiología , Parto Obstétrico
14.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202390

RESUMEN

Many studies over the last 20 years have investigated the role of mitochondrial DNA (mtDNA) alterations in carcinogenesis. However, the status of the mtDNACN in MM and its implication in the pathogenesis of the disease remains unclear. We examined changes in plasma cell mtDNACN across different stages of MM by applying RT-PCR and high-throughput sequencing analysis. We observed a significant increase in the average mtDNACN in myeloma cells compared with healthy plasma cells (157 vs. 40 copies; p = 0.02). We also found an increase in mtDNACN in SMM and newly diagnosed MM (NDMM) paired samples and in consecutive relapses in the same patient. Survival analysis revealed the negative impact of a high mtDNACN in progression-free survival in NDMM (p = 0.005). Additionally, we confirmed the higher expression of mitochondrial biogenesis regulator genes in myeloma cells than in healthy plasma cells and we detected single nucleotide variants in several genes involved in mtDNA replication. Finally, we found that there was molecular similarity between "rapidly-progressing SMM" and MM regarding mtDNACN. Our data provide evidence that malignant transformation of myeloma cells involves the activation of mitochondrial biogenesis, resulting in increased mtDNA levels, and highlights vulnerabilities and potential therapeutic targets in the treatment of MM. Accordingly, mtDNACN tracking might guide clinical decision-making and management of complex entities such as high-risk SMM.

15.
Front Immunol ; 12: 634584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912162

RESUMEN

B-cell lymphomas are one of the most biologically and molecularly heterogeneous group of malignancies. The inherent complexity of this cancer subtype necessitates the development of appropriate animal model systems to characterize the disease with the ultimate objective of identifying effective therapies. In this article, we discuss a new driver of B-cell lymphomas - hnRNP K (heterogenous nuclear ribonucleoprotein K)-an RNA-binding protein. We introduce the Eµ-Hnrnpk mouse model, a murine model characterized by hnRNP K overexpression in B cells, which develops B-cell lymphomas with high penetrance. Molecular analysis of the disease developed in this model reveals an upregulation of the c-Myc oncogene via post-transcriptional and translational mechanisms underscoring the impact of non-genomic MYC activation in B-cell lymphomas. Finally, the transplantability of the disease developed in Eµ-Hnrnpk mice makes it a valuable pre-clinical platform for the assessment of novel therapeutics.


Asunto(s)
Linfocitos B/metabolismo , Transformación Celular Neoplásica/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Linfoma de Células B/metabolismo , Animales , Animales Modificados Genéticamente , Linfocitos B/inmunología , Linfocitos B/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Linfoma de Células B/genética , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba
16.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916196

RESUMEN

Mitochondria are involved in the development and acquisition of a malignant phenotype in hematological cancers. Recently, their role in the pathogenesis of multiple myeloma (MM) has been suggested to be therapeutically explored. MYC is a master regulator of b-cell malignancies such as multiple myeloma, and its activation is known to deregulate mitochondrial function. We investigated the impact of mitochondrial activity on the distinct entities of the disease and tested the efficacy of the mitochondrial inhibitor, tigecycline, to overcome MM proliferation. COXII expression, COX activity, mitochondrial mass, and mitochondrial membrane potential demonstrated a progressive increase of mitochondrial features as the disease progresses. In vitro and in vivo therapeutic targeting using the mitochondrial inhibitor tigecycline showed promising efficacy and cytotoxicity in monotherapy and combination with the MM frontline treatment bortezomib. Overall, our findings demonstrate how mitochondrial activity emerges in MM transformation and disease progression and the efficacy of therapies targeting these novel vulnerabilities.

17.
Micromachines (Basel) ; 12(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467039

RESUMEN

We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device. This approach demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double-layered bead composed by an inner layer of alginate and an outer layer of Puramatrix. We also demonstrated the maintenance and expansion of Multiple Myeloma cells in this construction. Here, the presented microfluidic technique is applied to construct a 3D biomimetic model to recapitulate the human hematopoietic stem cell niche using double-layered hydrogel beads cultured in 10% FBS culture medium. In this model, the long-term maintenance of the number of cells and expansion of hHSCS encapsulated in the proposed structures was observed. Additionally, a phenotypic characterization of the human hematopoietic stem cells generated in the presented biomimetic model was performed in order to assess their long-term stemness maintenance. Results indicate that the ex vivo cultured human CD34+ cells from bone marrow were viable, maintained, and expanded over a time span of eight weeks. This novel long-term stem cell culture methodology could represent a novel breakthrough to improve Hematopoietic Progenitor cell Transplant (HPT) as well as a novel tool for further study of the biochemical and biophysical factors influencing stem cell behavior. This technology opens a myriad of new applications as a universal stem cell niche model potentially able to expand other types of cells.

18.
Haematologica ; 106(9): 2325-2333, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32732356

RESUMEN

In cases of treatment failure in acute myeloid leukemia (AML), the utility of mutational profiling in primary refractoriness and relapse is not established. We undertook a perspective study using next-generation sequencing (NGS) of clinical follow-up samples (n=91) from 23 patients with AML with therapeutic failure to cytarabine plus idarubicin or fludarabine. Cases of primary refractoriness to treatment were associated with a lower number of DNA variants at diagnosis than cases of relapse (median 1.67 and 3.21, respectively, p=0.029). The most frequently affected pathways in patients with primary refractoriness were signaling, transcription and tumor suppression, whereas methylation and splicing pathways were mainly implicated in relapsed patients. New therapeutic targets, either by an approved drug or within clinical trials, were not identified in any of the cases of refractoriness (0/10); however, 8 potential new targets were found in 5 relapsed patients (5/13) (p=0.027): 1 IDH2, 3 SF3B1, 2 KRAS, 1 KIT and 1 JAK2. Sixty-five percent of all variants detected at diagnosis were not detected at complete response (CR). Specifically, 100% of variants in EZH2, RUNX1, VHL, FLT3, ETV6, U2AF1, PHF6 and SF3B1 disappeared at CR, indicating their potential use as markers to evaluate minimal residual disease (MRD) for follow-up of AML. Molecular follow-up using a custom NGS myeloid panel of 32 genes in the post-treatment evaluation of AML can help in the stratification of prognostic risk, the selection of MRD markers to monitor the response to treatment and guide post-remission strategies targeting AML, and the selection of new drugs for leukemia relapse.


Asunto(s)
Leucemia Mieloide Aguda , Preparaciones Farmacéuticas , Evolución Clonal/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual , Pronóstico , Recurrencia
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA