Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1305855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463572

RESUMEN

Plant proteases are essential enzymes that play key roles during crucial phases of plant life. Some proteases are mainly involved in general protein turnover and recycle amino acids for protein synthesis. Other proteases are involved in cell signalling, cleave specific substrates and are key players during important genetically controlled molecular processes. Cathepsin B is a cysteine protease that can do both because of its exopeptidase and endopeptidase activities. Animal cathepsin B has been investigated for many years, and much is known about its mode of action and substrate preferences, but much remains to be discovered about this potent protease in plants. Cathepsin B is involved in plant development, germination, senescence, microspore embryogenesis, pathogen defence and responses to abiotic stress, including programmed cell death. This review discusses the structural features, the activity of the enzyme and the differences between the plant and animal forms. We discuss its maturation and subcellular localisation and provide a detailed overview of the involvement of cathepsin B in important plant life processes. A greater understanding of the cell signalling processes involving cathepsin B is needed for applied discoveries in plant biotechnology.

2.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142688
3.
Biol Chem ; 399(10): 1223-1235, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29924726

RESUMEN

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Asunto(s)
Arabidopsis/enzimología , Carboxipeptidasas/metabolismo , Catepsina B/metabolismo , Endopeptidasas/metabolismo , Animales , Carboxipeptidasas/química , Carboxipeptidasas/genética , Catepsina B/química , Catepsina B/genética , Clonación Molecular , Endopeptidasas/química , Endopeptidasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Hojas de la Planta/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Spodoptera/citología , Spodoptera/genética
4.
Plant J ; 94(1): 131-145, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385647

RESUMEN

The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Microscopía Electrónica de Transmisión , Ribosomas/enzimología , Ribosomas/metabolismo , Purificación por Afinidad en Tándem
5.
Funct Plant Biol ; 45(2): 171-179, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32291031

RESUMEN

Phytaspases are plant cell death-related proteases of the subtilisin-like protease family that possess an unusual aspartate cleavage specificity. Although phytaspase activity is widespread in plants, phytaspase of Arabidopsis thaliana (L.) Heynh. has escaped detection and identification thus far. Here, we show that a single gene (At4 g10540) out of 56 A. thaliana subtilisin-like protease genes encodes a phytaspase. The recombinant phytaspase was overproduced in Nicotiana benthamiana Domin leaves, isolated, and its substrate specificity and properties were characterised. At pH 5.5, at physiological mildly acidic reaction conditions, the Arabidopsis phytaspase was shown to be strictly Asp-specific. The strongly preferred cleavage motifs of the enzyme out of a panel of synthetic peptide substrates were YVAD and IETD, while the VEID-based substrate preferred by the tobacco and rice phytaspases was almost completely resistant to hydrolysis. At neutral pH, however, the Arabidopsis phytaspase could hydrolyse peptide substrates after two additional amino acid residues, His and Phe, in addition to Asp. This observation may indicate that the repertoire of Arabidopsis phytaspase targets could possibly be regulated by the conditions of the cellular environment. Similar to tobacco and rice phytaspases, the Arabidopsis enzyme was shown to accumulate in the apoplast of epidermal leaf cells. However, in stomatal cells Arabidopsis phytaspase was observed inside the cells, possibly co-localising with vacuole. Our study thus demonstrates that the Arabidopsis phytaspase possesses both important similarities with and distinctions from the already known phytaspases, and is likely to be the most divergent member of the phytaspase family.

6.
J Exp Bot ; 69(6): 1369-1385, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29281085

RESUMEN

Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.


Asunto(s)
Arabidopsis/fisiología , Autofagia/genética , Proteasas de Cisteína/genética , Arabidopsis/genética , Proteasas de Cisteína/metabolismo , Mutación , Papaína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
7.
New Phytol ; 218(3): 1143-1155, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28675441

RESUMEN

Programmed cell death (PCD) induced by endoplasmic reticulum (ER) stress is implicated in various plant physiological processes, yet its mechanism is still elusive. An activation of caspase-3-like enzymatic activity was clearly demonstrated but the role of the two known plant proteases with caspase-3-like activity, cathepsin B and proteasome subunit PBA1, remains to be established. Both genetic downregulation and chemical inhibition were used to investigate the function of cathepsin B and PBA1 in ER-stress-induced PCD (ERSID). Transcript level and activity labelling of cathepsin B were used to assess activation. To study tonoplast rupture, a plant PCD feature, both confocal and electronic microscopies were used. Cathepsin B downregulation reduced reactive oxygen species (ROS) accumulation and ERSID without affecting the induction of the unfolded protein response (UPR), but downregulation of PBA1 increased UPR and ERSID. Tonoplast rupture was not altered in the cathepsin B mutant and cathepsin B activation was independent of vacuolar processing enzyme (VPE). VPE activity was independent of cathepsin B. ERSID is regulated positively by cathepsin B and negatively by PBA1, revealing a complex picture behind caspase-3-like activity in plants. Cathepsin B may execute its function after tonoplast rupture and works in parallel with VPE.


Asunto(s)
Apoptosis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Caspasa 3/metabolismo , Catepsina B/metabolismo , Cisteína Endopeptidasas/metabolismo , Estrés del Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Abajo , Fenotipo , Plantones/metabolismo , Respuesta de Proteína Desplegada , Vacuolas/metabolismo , Vacuolas/ultraestructura
8.
EMBO J ; 30(6): 1173-83, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21326210

RESUMEN

Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria.


Asunto(s)
Apoptosis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos/metabolismo , Proteínas de Arabidopsis/genética , Calor , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales/fisiología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Péptidos/genética , Hojas de la Planta/metabolismo , Plantones/metabolismo
9.
Planta ; 230(5): 1003-17, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19705149

RESUMEN

We report on the characterization of the interaction between reactive oxygen species signalling and abscisic acid (ABA)-mediated gene network in ozone (O(3)) stress response. To identify the stress-related signalling pathways and possible cross-talk controlled by an ABA-negative regulator, the protein phosphatase 2C abscisic acid insensitive1 (ABI1), we performed a genome-wide transcription profiling of O(3)-treated wild-type and ABI1 knockout (abi1td) plants. In addition, to better understand ABA signalling and the interactions between stress response pathways, we performed a microarray analysis of drought-treated plants. Functional categorization of the identified genes showed that ABI1 is involved in the modulation of several cellular processes including metabolism, transport, development, information pathways and variant splicing. Comparisons with available transcriptome data sets revealed the extent of ABI1 involvement in both ABA-dependent and ABA-independent gene expression. Furthermore, in O(3) stress the ABA hypersensitivity of abi1td resulted in a significant reduction of the ABA level, ethylene (ET) over-production and O(3) tolerance. Moreover, the physical interaction of ABI1 with ACC synthase2 and ACC synthase6 was shown. We provide a model explaining how ABI1 can regulate both ABA and ET biosynthesis. Altogether, our findings indicate that ABI1 plays the role of a general signal transducer linking ABA and ET biosynthesis as well as signalling pathways to O(3) stress tolerance.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Mutagénesis Insercional/efectos de los fármacos , Ozono/farmacología , Fosfoproteínas Fosfatasas/genética , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Ciclopentanos/farmacología , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Oxilipinas/farmacología , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C , Regulón/genética , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
10.
Biochim Biophys Acta ; 1777(5): 433-40, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18371296

RESUMEN

When plants experience an imbalance between the absorption of light energy and the use of that energy to drive metabolism, they are liable to suffer from oxidative stress. Such imbalances arise due to environmental conditions (e.g. heat, chilling or drought), and can result in the production of reactive oxygen species (ROS). Here, we present evidence for a novel protective process - feedback redox regulation via the redox poise of the NADP(H) pool. Photosynthetic electron transport was studied in two transgenic tobacco (Nicotiana tabacum) lines - one having reduced levels of ferredoxin NADP+-reductase (FNR), the enzyme responsible for reducing NADP+, and the other reduced levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the principal consumer of NADPH. Both had a similar degree of inhibition of carbon fixation and impaired electron transport. However, whilst FNR antisense plants were obviously stressed, with extensive bleaching of leaves, GAPDH antisense plants showed no visible signs of stress, beyond having a slowed growth rate. Examination of electron transport in these plants indicated that this difference is due to feedback regulation occurring in the GAPDH but not the FNR antisense plants. We propose that this reflects the occurrence of a previously undescribed regulatory pathway responding to the redox poise of the NADP(H) pool.


Asunto(s)
NADP/metabolismo , Nicotiana/metabolismo , Fotosíntesis/fisiología , Transporte de Electrón/fisiología , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/genética , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Oxidación-Reducción , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/fisiología
11.
J Exp Bot ; 59(3): 491-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18272922

RESUMEN

The extent of conservation in the programmed cell death pathways that are activated in species belonging to different kingdoms is not clear. Caspases are key components of animal apoptosis; caspase activities are detected in both animal and plant cells. Yet, while animals have caspase genes, plants do not have orthologous sequences in their genomes. It is 10 years since the first caspase activity was reported in plants, and there are now at least eight caspase activities that have been measured in plant extracts using caspase substrates. Various caspase inhibitors can block many forms of plant programmed cell death, suggesting that caspase-like activities are required for completion of the process. Since plant metacaspases do not have caspase activities, a major challenge is to identify the plant proteases that are responsible for the caspase-like activities and to understand how they relate, if at all, to animal caspases. The protease vacuolar processing enzyme, a legumain, is responsible for the cleavage of caspase-1 synthetic substrate in plant extracts. Saspase, a serine protease, cleaves caspase-8 and some caspase-6 synthetic substrates. Possible scenarios that could explain why plants have caspase activities without caspases are discussed.


Asunto(s)
Caspasas/metabolismo , Muerte Celular/fisiología , Plantas/enzimología , Cisteína Endopeptidasas/metabolismo
12.
J Biol Chem ; 283(2): 774-83, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17998208

RESUMEN

Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress.


Asunto(s)
Apoptosis/fisiología , Proteínas de Arabidopsis/genética , Caspasa 8/genética , Cisteína Endopeptidasas/genética , Peróxido de Hidrógeno/farmacología , Rayos Ultravioleta , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Arabidopsis , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/efectos de la radiación , Caspasa 8/efectos de los fármacos , Caspasa 8/efectos de la radiación , Muerte Celular , Cisteína Endopeptidasas/deficiencia , Cisteína Endopeptidasas/efectos de los fármacos , Cisteína Endopeptidasas/efectos de la radiación , Cartilla de ADN , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Oxidativo , Plantas Modificadas Genéticamente/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/fisiología , Protoplastos/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Biol Chem ; 279(1): 779-87, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14573611

RESUMEN

Plants, animals, and several branches of unicellular eukaryotes use programmed cell death (PCD) for defense or developmental mechanisms. This argues for a common ancestral apoptotic system in eukaryotes. However, at the molecular level, very few regulatory proteins or protein domains have been identified as conserved across all eukaryotic PCD forms. A very important goal is to determine which molecular components may be used in the execution of PCD in plants, which have been conserved during evolution, and which are plant-specific. Using Arabidopsis thaliana, we have shown that UV radiation can induce apoptosis-like changes at the cellular level and that a UV experimental system is relevant to the study of PCD in plants. We report here that UV induction of PCD required light and that a protease cleaving the caspase substrate Asp-Glu-Val-Asp (DEVDase activity) was induced within 30 min and peaked at 1 h. This DEVDase appears to be related to animal caspases at the biochemical level, being insensitive to broad-range cysteine protease inhibitors. In addition, caspase-1 and caspase-3 inhibitors and the pan-caspase inhibitor p35 were able to suppress DNA fragmentation and cell death. These results suggest that a YVADase activity and an inducible DEVDase activity possibly mediate DNA fragmentation during plant PCD induced by UV overexposure. We also report that At-DAD1 and At-DAD2, the two A. thaliana homologs of Defender against Apoptotic Death-1, could suppress the onset of DNA fragmentation in A. thaliana, supporting an involvement of the endoplasmic reticulum in this form of the plant PCD pathway.


Asunto(s)
Apoptosis/efectos de la radiación , Arabidopsis/efectos de la radiación , Proteínas de Caenorhabditis elegans , Proteínas Represoras/fisiología , Rayos Ultravioleta , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Arabidopsis/genética , Arabidopsis/fisiología , Secuencia de Bases , Inhibidores de Caspasas , Caspasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Cartilla de ADN , ADN de Plantas/química , ADN de Plantas/efectos de la radiación , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Reacción en Cadena de la Polimerasa , Protoplastos/efectos de la radiación , Proteínas Represoras/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA