Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Pharmacol ; 15: 1365151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689663

RESUMEN

Preparations of black cohosh extract are sold as dietary supplements marketed to relieve the vasomotor symptoms of menopause, and some studies suggest it may protect against postmenopausal bone loss. Postmenopausal women are also frequently prescribed bisphosphonates, such as risedronate, to prevent osteoporotic bone loss. However, the pharmacodynamic interactions between these compounds when taken together is not known. To investigate possible interactions, 6-month-old, female Sprague-Dawley rats underwent bilateral ovariectomy or sham surgery and were treated for 24 weeks with either vehicle, ethinyl estradiol, risedronate, black cohosh extract or coadministration of risedronate and black cohosh extract, at low or high doses. Bone mineral density (BMD) of the femur, tibia, and lumbar vertebrae was then measured by dual-energy X-ray absorptiometry (DEXA) at weeks 0, 8, 16, and 24. A high dose of risedronate significantly increased BMD of the femur and vertebrae, while black cohosh extract had no significant effect on BMD individually and minimal effects upon coadministration with risedronate. Under these experimental conditions, black cohosh extract alone had no effect on BMD, nor did it negatively impact the BMD-enhancing properties of risedronate.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35895915

RESUMEN

In 2007, dietary exposure to "scrap melamine' resulted in the death of a large number of cats and dogs, which was attributed to the formation of melamine cyanurate crystals in their kidneys. In this study, we investigated if changes in urinary pH could diminish the renal toxicity associated with exposure to combinations of melamine and cyanuric acid. Female Sprague-Dawley rats were treated for three days with suspensions of melamine and cyanuric acid at doses that were expected to induce renal toxicity. Dosing was then discontinued and the rats were treated for seven days with drinking water solutions (i.e., ammonium chloride and sodium bicarbonate) that would alter urinary pH. The urinary pH of rats administered ammonium chloride drinking water decreased from pH 6.0-6.2 to pH 5.1-5.2. This was accompanied by a decrease in the incidence of melamine cyanurate crystals in the kidneys and a decrease in the incidence of renal lesions. These data suggest that acidification of urine may help overcome the renal toxicities associated with the formation of melamine cyanurate crystals in the kidney.

4.
Arch Toxicol ; 94(12): 4173-4196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32886187

RESUMEN

Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers' lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.


Asunto(s)
Acrilamida/toxicidad , Compuestos Epoxi/toxicidad , Fibroblastos/efectos de los fármacos , Mutagénesis , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
5.
Toxicol Appl Pharmacol ; 386: 114826, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730783

RESUMEN

The widespread use and high abuse liability of tobacco products has received considerable public health attention, in particular for youth, who are vulnerable to nicotine addiction. In this study, adult and adolescent squirrel monkeys were used to evaluate age-related metabolism and pharmacokinetics of nicotine after intravenous administration. A physiologically-based pharmacokinetic (PBPK) model was created to characterize the pharmacokinetic behaviors of nicotine and its metabolites, cotinine, trans-3'-hydroxycotinine (3'-OH cotinine), and trans-3'-hydroxycotinine glucuronide (3'-OH cotinine glucuronide) for both adult and adolescent squirrel monkeys. The PBPK nicotine model was first calibrated for adult squirrel monkeys utilizing in vitro nicotine metabolic data, plasma concentration-time profiles and cumulative urinary excretion data for nicotine and metabolites. Further model refinement was conducted when the calibrated adult model was scaled to the adolescents, because adolescents appeared to clear nicotine and cotinine more rapidly relative to adults. More specifically, the resultant model parameters representing systemic clearance of nicotine and cotinine for adolescent monkeys were approximately two- to three-fold of the adult values on a per body weight basis. The nonhuman primate PBPK model in general captured experimental observations that were used for both model calibration and evaluation, with acceptable performance metrics for precision and bias. The model also identified differences in nicotine pharmacokinetics between adolescent and adult nonhuman primates which might also be present in humans.


Asunto(s)
Nicotina/farmacocinética , Factores de Edad , Animales , Cotinina/metabolismo , Cotinina/orina , Inyecciones Intravenosas , Hígado/metabolismo , Masculino , Nicotina/administración & dosificación , Nicotina/sangre , Nicotina/orina , Saimiri
6.
Chem Res Toxicol ; 32(6): 1193-1203, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31120748

RESUMEN

Pyrrolizidine alkaloids (PAs) are phytochemicals present in more than 6000 plant species worldwide; about half of the PAs are hepatotoxic, genotoxic, and carcinogenic. Because of their wide exposure and carcinogenicity, the International Programme on Chemical Safety (IPCS) concluded that PAs are a threat to human health and safety. We recently determined that PA-induced liver tumor initiation is mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-DNA adducts and proposed that these DHP-DNA adducts are biomarkers of PA exposure and liver tumor initiation. To validate the generality of this metabolic activation pathway and DHP-DNA adducts as biomarkers, it is significant to identify reactive metabolites associated with this metabolic activation pathway. Segall et al. ( Segall et al. ( 1984 ) Drug Metab. Dispos. 12 , 68 - 71 ) previously reported that 1-formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP) is generated from the metabolism of senecionine by mouse liver microsomes. In the present study, we examined the metabolism of seven hepatocarcinogenic PAs (senecionine, intermedine, retrorsine, riddelliine, DHR, heliotrine, and senkirkine) and one noncarcinogenic PA (platyphylline) by human, rat, and mouse liver microsomes. 1-CHO-DHP was identified as a common metabolite from the metabolism of these hepatotoxic PAs, but not from platyphylline. Incubation of 1-CHO-DHP with HepG2 and A549 cells produced the same set of DHP-DNA adducts, which were identified by both LC/MS MRM mode and selected ion monitoring analyses through comparison to synthetic standards. In the incubation medium of 1-CHO-DHP treated HepG2 cells, both DHP and 7-cysteine-DHP were formed, which were capable of binding to cellular DNA to produce DHP-DNA adducts. These results suggest that 1-CHO-DHP is a proximate DNA metabolite of genotoxic and carcinogenic PAs.


Asunto(s)
Carcinógenos/farmacología , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/metabolismo , Células A549 , Animales , Carcinógenos/síntesis química , Carcinógenos/química , Aductos de ADN/efectos de los fármacos , Aductos de ADN/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Ratas , Ratas Endogámicas F344 , Células Tumorales Cultivadas
7.
Biochem Pharmacol ; 155: 455-467, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30028994

RESUMEN

Nevirapine, a non-nucleoside reverse transcriptase inhibitor used for the treatment of AIDS, can cause serious skin rashes and hepatotoxicity. Previous studies have indicated that the benzylic sulfate 12-sulfoxynevirapine, the formation of which is catalyzed by human sulfotransferases (SULTs), may play a causative role in these toxicities. To characterize better the role of 12-sulfoxynevirapine in nevirapine-induced cytotoxicity, the ability of 12 expressed human SULT isoforms to conjugate 12-hydroxynevirapine was assessed. Of the 12 human SULTs, no detectable 12-sulfoxynevirapine was observed with SULT1A3, SULT1C2, SULT1C3, SULT2B1, SULT4A1, or SULT6B1. As determined by the Vmax/Km ratio, SULT2A1 had the highest overall 12-hydoxynevirapine sulfonation activity; lower activities were observed with SULT1A1, SULT1A2, SULT1B1, SULT1C4, and SULT1E1. Incubation of 12-sulfoxynevirapine with glutathione and cysteine led to adduct formation; lower yields were obtained with deoxynucleosides. 12-Hydroxynevirapine was more cytotoxic than nevirapine to TK6, TK6/SULT vector, and TK6/SULT2A1 cells. With nevirapine, there was no difference in cytotoxicity among the three cell lines, whereas with 12-hydroxynevirapine, TK6/SULT2A1 cells were more resistant than TK6 and TK6/SULT vector cells. Co-incubation of 12-hydroxynevirapine with the competitive SULT2A1 substrate dehydroepiandrosterone decreased the level of 12-sulfoxynevirapine and increased the cytotoxicity in TK6/SULT2A1 cells. These data demonstrate that although 12-sulfoxynevirapine reacts with nucleophiles to form adducts, sulfonation of 12-hydroxynevirapine decreases the cytotoxicity of 12-hydroxynevirapine in TK6 cells.


Asunto(s)
Citotoxinas/metabolismo , Citotoxinas/toxicidad , Nevirapina/análogos & derivados , Sulfotransferasas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nevirapina/metabolismo , Nevirapina/toxicidad , Ratas , Ratas Sprague-Dawley
8.
Arch Toxicol ; 91(6): 2405-2423, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27896399

RESUMEN

Triclosan is a widely used broad-spectrum anti-bacterial agent. The objectives of this study were to identify which cytochrome P450 (CYP) isoforms metabolize triclosan and to examine the effects of CYP-mediated metabolism on triclosan-induced cytotoxicity. A panel of HepG2-derived cell lines was established, each of which overexpressed a single CYP isoform, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1. The extent of triclosan metabolism by each CYP was assessed by reversed-phase high-performance liquid chromatography with online radiochemical detection. Seven isoforms were capable of metabolizing triclosan, with the order of activity being CYP1A2 > CYP2B6 > CYP2C19 > CYP2D6 ≈ CYP1B1 > CYP2C18 ≈ CYP1A1. The remaining 11 isoforms (CYP2A6, CYP2A7, CYP2A13, CYP2C8, CYP2C9, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1) had little or no activity toward triclosan. Three metabolites were detected: 2,4-dichlorophenol, 4-chlorocatechol, and 5'-hydroxytriclosan. Consistent with the in vitro screening data, triclosan was extensively metabolized in HepG2 cells overexpressing CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP2C18, and these cells were much more resistant to triclosan-induced cytotoxicity compared to vector cells, suggesting that CYP-mediated metabolism of triclosan attenuated its cytotoxicity. In addition, 2,4-dichlorophenol and 4-chlorocatechol were less toxic than triclosan to HepG2/vector cells. Conjugation of triclosan, catalyzed by human glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), also occurred in HepG2/CYP-overexpressing cells and primary human hepatocytes, with a greater extent of conjugation being associated with higher cell viability. Co-administration of triclosan with UGT or SULT inhibitors led to greater cytotoxicity in HepG2 cells and primary human hepatocytes, indicating that glucuronidation and sulfonation of triclosan are detoxification pathways. Among the 18 CYP-overexpressing cell lines, an inverse correlation was observed between cell viability and the level of triclosan in the culture medium. In conclusion, human CYP isoforms that metabolize triclosan were identified, and the metabolism of triclosan by CYPs, UGTs, and SULTs decreased its cytotoxicity in hepatic cells.


Asunto(s)
Antibacterianos/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Triclosán/toxicidad , Antibacterianos/metabolismo , Supervivencia Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Glucuronosiltransferasa/metabolismo , Células Hep G2 , Hepatocitos/enzimología , Humanos , Isoenzimas , Microsomas Hepáticos/enzimología , Cultivo Primario de Células , Sulfotransferasas/metabolismo , Triclosán/metabolismo
9.
Food Chem ; 213: 567-570, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27451219

RESUMEN

We report here a simple and rapid method for the quantification of brominated vegetable oil (BVO) in soft drinks based upon liquid chromatography-electrospray ionization mass spectrometry. Unlike previously reported methods, this novel method does not require hydrolysis, extraction or derivatization steps, but rather a simple "dilute and shoot" sample preparation. The quantification is conducted by mass spectrometry in selected ion recording mode and a single point standard addition procedure. The method was validated in the range of 5-25µg/mL BVO, encompassing the legal limit of 15µg/mL established by the US FDA for fruit-flavored beverages in the US market. The method was characterized by excellent intra- and inter-assay accuracy (97.3-103.4%) and very low imprecision [0.5-3.6% (RSD)]. The direct nature of the quantification, simplicity, and excellent statistical performance of this methodology constitute clear advantages in relation to previously published methods for the analysis of BVO in soft drinks.


Asunto(s)
Bebidas/análisis , Bebidas Gaseosas/análisis , Cromatografía Liquida/métodos , Aceites de Plantas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Halogenación
10.
Int J Cancer ; 138(4): 976-82, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26335255

RESUMEN

The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation.


Asunto(s)
Activación Metabólica/fisiología , Carcinógenos/metabolismo , Aductos de ADN/metabolismo , Imidazoles/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Western Blotting , Carcinógenos/toxicidad , Cromatografía Liquida , Imidazoles/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espectrometría de Masas en Tándem , Proteína p53 Supresora de Tumor/metabolismo
11.
Food Chem Toxicol ; 81: 92-103, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25862956

RESUMEN

Bisphenol A (BPA), an industrial chemical used in the manufacture of polycarbonate and epoxy resins, binds to the nuclear estrogen receptor with an affinity 4-5 orders of magnitude lower than that of estradiol. We reported previously that "high BPA" [100,000 and 300,000 µg/kg body weight (bw)/day], but not "low BPA" (2.5-2700 µg/kg bw/day), induced clear adverse effects in NCTR Sprague-Dawley rats gavaged daily from gestation day 6 through postnatal day (PND) 90. The "high BPA" effects partially overlapped those of ethinyl estradiol (EE2, 0.5 and 5.0 µg/kg bw/day). To evaluate further the potential of "low BPA" to induce biological effects, here we assessed the global genomic DNA methylation and gene expression in the prostate and female mammary glands, tissues identified previously as potential targets of BPA, and uterus, a sensitive estrogen-responsive tissue. Both doses of EE2 modulated gene expression, including of known estrogen-responsive genes, and PND 4 global gene expression data showed a partial overlap of the "high BPA" effects with those of EE2. The "low BPA" doses modulated the expression of several genes; however, the absence of a dose response reduces the likelihood that these changes were causally linked to the treatment. These results are consistent with the toxicity outcomes.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Fenoles/administración & dosificación , Fenoles/toxicidad , Próstata/efectos de los fármacos , Útero/efectos de los fármacos , Administración Oral , Animales , Cromatografía Liquida , Complemento C3/genética , Complemento C3/metabolismo , Relación Dosis-Respuesta a Droga , Etinilestradiol/administración & dosificación , Etinilestradiol/toxicidad , Femenino , Expresión Génica , Genómica/métodos , Masculino , Glándulas Mamarias Animales/metabolismo , Metiltransferasas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Próstata/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteína G de Unión al Calcio S100/genética , Proteína G de Unión al Calcio S100/metabolismo , Espectrometría de Masas en Tándem , Útero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Chem Res Toxicol ; 27(10): 1720-31, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25211425

RESUMEN

Pyrrolizidine alkaloid-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids exert toxicity through metabolism to dehydropyrrolizidine alkaloids that bind to cellular protein and DNA, leading to hepatotoxicity, genotoxicity, and tumorigenicity. To date, it is not clear how dehydropyrrolizidine alkaloids bind to cellular constituents, including amino acids and proteins, resulting in toxicity. Metabolism of carcinogenic monocrotaline, riddelliine, and heliotrine produces dehydromonocrotaline, dehyroriddelliine, and dehydroheliotrine, respectively, as primary reactive metabolites. In this study, we report that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts. For structural elucidation, DHP-valine adducts were derivatized with phenyl isothiocyanate (PITC) to DHP-valine-PITC products. After HPLC separation, their structures were characterized by mass spectrometry, UV-visible spectrophotometry, (1)H NMR, and (1)H-(1)H COSY NMR spectral analysis. Two DHP-valine-PITC adducts, designated as DHP-valine-PITC-1 and DHP-valine-PITC-3, had the amino group of valine linked to the C7 position of the necine base, and the other two DHP-valine-PITC products, DHP-valine-PITC-2 and DHP-valine-PITC-4, linked to the C9 position of the necine base. DHP-valine-PITC-1 was interconvertible with DHP-valine-PITC-3, and DHP-valine-PITC-2 was interconvertible with DHP-valine-PITC-4. Reaction of dehydroriddelliine and dehydroheliotrine with valine provided similar results. However, reaction of valine and dehydroretronecine (DHR) under similar experimental conditions did not produce DHP-valine adducts. Reaction of dehydromonocrotaline with rat hemoglobin followed by derivatization with PITC also generated the same four DHP-valine-PITC adducts. This represents the first full structural elucidation of protein conjugated pyrrolic adducts formed from reaction of dehydropyrrolizidine alkaloids with an amino acid (valine). In addition, it was found that DHP-valine-2 and DHP-valine-4, with the valine amino group linked at the C7 position of the necine base, can lose the valine moiety to form DHP.


Asunto(s)
Alcaloides/química , Hemoglobinas/química , Alcaloides de Pirrolicidina/química , Valina/química , Animales , Cromatografía Líquida de Alta Presión , Femenino , Isotiocianatos/química , Espectroscopía de Resonancia Magnética , Monocrotalina/análogos & derivados , Monocrotalina/química , Ratas , Ratas Endogámicas F344 , Espectrometría de Masas en Tándem
13.
Int J Cancer ; 135(2): 502-7, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24921086

RESUMEN

Aristolochic acid (AA) causes aristolochic acid nephropathy (AAN), first described in women in Belgium accidently prescribed Aristolochia fangchi in a slimming treatment, and also Balkan endemic nephropathy (BEN), through probable dietary contamination with Aristolochia clematitis seeds. Both nephropathies have a high risk of urothelial cancer, with AA being the causative agent. In tissues of AAN and BEN patients, a distinct DNA adduct, 7-(deoxyadenosin-N6-yl)-aristolactam I (dA-AAI), has been detected. DNA adducts can be removed through DNA repair, they can result in mutations through erroneous DNA replication or they can cause cell death. The dA-AAI adduct induces AT to TA transversions in the tumor-suppressor TP53 gene in experimental systems, matching TP53 mutations observed in urothelial tumors from AAN cancer cases. Using thin-layer chromatography 32P-postlabeling and mass spectrometric analysis we report the detection of dA-AAI in renal DNA from 11 Belgian AAN patients over 20 years after exposure to AA had ceased. Our results showed that dA-AAI is an established biomarker of AA exposure, and that this biomarker can be demonstrated to be persistent decades after a distinct AA exposure. Further, the persistence of dA-AAI adducts appears to be a critical determinant for the AA mutational fingerprint frequently found in oncogenes and tumor suppressor genes recently identified by whole genome sequencing of AA-associated urothelial tumors. The potential for exposure to AA worldwide is high; the unprecedented long-term persistence of dA-AAI provides a useful long-term biomarker of exposure and attests to the role of AA in human urothelial malignancy.


Asunto(s)
Ácidos Aristolóquicos/efectos adversos , Nefropatía de los Balcanes/inducido químicamente , Biomarcadores/análisis , Aductos de ADN/análisis , Mutágenos/efectos adversos , Adulto , Anciano , Cromatografía en Capa Delgada , Femenino , Humanos , Riñón/química , Riñón/patología , Masculino , Espectrometría de Masas , Persona de Mediana Edad
14.
Toxicol Sci ; 139(1): 174-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24496637

RESUMEN

Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 µg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 µg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Exposición Materna , Fenoles/toxicidad , Animales , Compuestos de Bencidrilo/administración & dosificación , Peso Corporal , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos , Fenoles/administración & dosificación , Embarazo , Ratas , Ratas Sprague-Dawley
15.
Int J Oncol ; 42(5): 1822-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23483119

RESUMEN

Iron plays a vital role in the normal functioning of cells via the regulation of essential cellular metabolic reactions, including several DNA and histone-modifying proteins. The metabolic status of iron and the regulation of epigenetic mechanisms are well-balanced and tightly controlled in normal cells; however, in cancer cells these processes are profoundly disturbed. Cancer-related abnormalities in iron metabolism have been corrected through the use of iron-chelating agents, which cause an inhibition of DNA synthesis, G1-S phase arrest, an inhibition of epithelial-to-mesenchymal transition, and the activation of apoptosis. In the present study, we show that, in addition to these well-studied molecular mechanisms, the treatment of wild-type TP53 MCF-7 and mutant TP53 MDA-MB-231 human breast cancer cells with desferrioxamine (DFO), a model iron chelator, causes significant epigenetic alterations at the global and gene-specific levels. Specifically, DFO treatment decreased the protein levels of the histone H3 lysine 9 demethylase, Jumonji domain-containing protein 2A (JMJD2A), in the MCF-7 and MDA-MB-231 cells and down-regulated the levels of the histone H3 lysine 4 demethylase, lysine-specific demethylase 1 (LSD1), in the MDA-MB-231 cells. These changes were accompanied by alterations in corresponding metabolically sensitive histone marks. Additionally, we demonstrate that DFO treatment activates apoptotic programs in MCF-7 and MDA-MB-231 cancer cells and enhances their sensitivity to the chemotherapeutic agents, doxorubicin and cisplatin; however, the mechanisms underlying this activation differ. The induction of apoptosis in wild-type TP53 MCF-7 cells was p53-dependent, triggered mainly by the down-regulation of the JMJD2A histone demethylase, while in mutant TP53 MDA-MB-231 cells, the activation of the p53-independent apoptotic program was driven predominantly by the epigenetic up-regulation of p21.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética , Hierro/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cisplatino/farmacología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Quelantes del Hierro/farmacología , Células MCF-7 , Regulación hacia Arriba
16.
Food Chem Toxicol ; 51: 106-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23022069

RESUMEN

Although standard nephrotoxicity assessments primarily detect impaired renal function, KIM-1, clusterin, NGAL, osteopontin and TIMP-1 were recently identified biomarkers proposed to indicate earlier perturbations in renal integrity. The recent adulteration of infant and pet food with melamine (MEL) and structurally-related compounds revealed that co-ingestion of MEL and cyanuric acid (CYA) could form melamine-cyanurate crystals which obstruct renal tubules and induce acute renal failure. This study concurrently evaluated the ability of multiplexed urinary biomarker immunoassays and biomarker gene expression analysis to detect nephrotoxicity in F344 rats co-administered 60ppm each of MEL and CYA in feed or via gavage for 28days. The biomarkers were also evaluated for the ability to differentiate the effects of the compounds when co-administered using diverse dosing schedules (i.e., consecutive vs. staggered gavage) and dosing matrixes (i.e., feed vs. gavage). Our results illustrate the ability of both methods to detect and differentiate the severity of adverse effects in the staggered and consecutive gavage groups at much lower doses than previously observed in animals co-exposed to the compounds in feed. We also demonstrate that these urinary biomarkers outperform traditional diagnostic methods and represent a powerful, non-invasive indicator of chemical-induced nephrotoxicity prior to the onset of renal dysfunction.


Asunto(s)
Biomarcadores/orina , Expresión Génica , Insuficiencia Renal/inducido químicamente , Triazinas/toxicidad , Proteínas de Fase Aguda/genética , Alimentación Animal/toxicidad , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/orina , Clusterina/orina , Cistatina C/orina , Exposición a Riesgos Ambientales/efectos adversos , Ensayo de Inmunoadsorción Enzimática , Femenino , Lipocalina 2 , Lipocalinas/genética , Masculino , Osteopontina/orina , Proteínas Proto-Oncogénicas/genética , Ratas , Ratas Endogámicas F344 , Insuficiencia Renal/diagnóstico , Insuficiencia Renal/genética , Insuficiencia Renal/orina , Inhibidor Tisular de Metaloproteinasa-1/genética
17.
Chem Res Toxicol ; 25(9): 1985-96, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22857713

RESUMEN

Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.


Asunto(s)
Carcinógenos/química , Aductos de ADN/química , Alcaloides de Pirrolicidina/química , Animales , Carcinógenos/toxicidad , Bovinos , Cromatografía Líquida de Alta Presión , ADN/química , Aductos de ADN/síntesis química , Aductos de ADN/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Microsomas Hepáticos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Alcaloides de Pirrolicidina/farmacología , Alcaloides de Pirrolicidina/toxicidad , Ratas , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo
18.
Int J Cancer ; 131(9): 2008-15, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22336951

RESUMEN

Acrylamide is a high-volume industrial chemical, a component of cigarette smoke, and a product formed in certain foods prepared at high temperatures. Previously, we compared the extent of DNA adduct formation and mutations in B6C3F(1) /Tk mice treated neonatally with acrylamide or glycidamide to obtain information concerning the mechanism of acrylamide genotoxicity. We have now examined the tumorigenicity of acrylamide and glycidamide in mice treated neonatally. Male B6C3F(1) mice were injected intraperitoneally on postnatal days 1, 8 and 15 with 0.0, 0.14 or 0.70 mmol acrylamide or glycidamide per kg body weight per day and the tumorigenicity was assessed after 1 year. Survival in each of the groups was >87%, there were no differences in body weights among the groups, and the only treatment-related neoplasms involved the liver. The incidence of combined hepatocellular adenoma or carcinoma was 3.8% in the control group, 8.3% in the 0.14 mmol acrylamide and glycidamide per kg body weight groups, 4.2% in the 0.70 mmol acrylamide per kg body weight group and 71.4% in the 0.70 mmol glycidamide per kg body weight group. Analysis of the hepatocellular tumors indicated that the increased incidence observed in mice administered 0.70 mmol glycidamide per kg body weight was associated with A → G and A → T mutations at codon 61 of H-ras. These results, combined with our previous data on DNA adduct formation and mutation induction, suggest that the carcinogenicity of acrylamide is dependent on its metabolism to glycidamide, a pathway that is deficient in neonatal mice.


Asunto(s)
Acrilamida/toxicidad , Carcinógenos/toxicidad , Compuestos Epoxi/toxicidad , Genes ras/efectos de los fármacos , Acrilamida/metabolismo , Adenoma de Células Hepáticas/inducido químicamente , Animales , Animales Recién Nacidos , Pruebas de Carcinogenicidad , Aductos de ADN/biosíntesis , Daño del ADN/efectos de los fármacos , Femenino , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mutación , Distribución Aleatoria
19.
Drug Metab Dispos ; 39(12): 2169-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940903

RESUMEN

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ∼3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ∼2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ∼8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.


Asunto(s)
Aductos de ADN/metabolismo , Imidazoles/metabolismo , Microsomas Hepáticos/enzimología , NADPH-Ferrihemoproteína Reductasa/metabolismo , Animales , Western Blotting , Cromatografía Liquida , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH-Ferrihemoproteína Reductasa/genética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
20.
Toxicol Lett ; 206(2): 166-71, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21784140

RESUMEN

A number of studies have demonstrated that co-exposure to low levels of melamine and cyanuric acid elicits renal toxicity due to the formation of melamine cyanurate crystals in the kidney nephrons. In this work, we investigated if co-exposure of rats to these compounds leads to alterations in the expression of the genes encoding kidney injury molecule 1 (KIM-1), metallopeptidase inhibitor 1 (TIMP1), clusterin, osteopontin, and neutrophil gelatinase-associated lipocalin/lipocalin 2 (NGAL), which have been proposed as urinary biomarkers for nephrotoxicity. Six-week-old male and female F344 rats were fed ad libitum a diet fortified with 0 (control), 7, 23, 69, 229, or 694 ppm melamine and cyanuric acid (co-exposure groups), 1388 ppm melamine, or 1388 ppm cyanuric acid for seven days. Histopathology and clinical chemistry examination indicated marked toxicity only in the animals exposed to the two highest combined doses of melamine and cyanuric acid. Consistent with these observations, quantitative real-time polymerase chain reaction analysis of kidney tissue indicated increased expression of all genes analyzed relative to the control in both male and female rats fed daily with 229 or 694 ppm melamine and cyanuric acid. Exposure to lower levels of both compounds or to the individual compounds did not induce gene expression changes. These data indicate that quantifying the expression levels of the selected biomarker genes constitutes a useful endpoint to assess the combined toxicity of melamine and cyanuric acid in both male and female rats.


Asunto(s)
Contaminantes Ambientales/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Insuficiencia Renal/inducido químicamente , Triazinas/toxicidad , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animales , Biomarcadores/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Clusterina/genética , Clusterina/metabolismo , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/administración & dosificación , Femenino , Lipocalina 2 , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Nivel sin Efectos Adversos Observados , Osteopontina/genética , Osteopontina/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Insuficiencia Renal/metabolismo , Caracteres Sexuales , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Triazinas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA