Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acid Ther ; 34(3): 143-155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648015

RESUMEN

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oligonucleótidos Fosforotioatos , Humanos , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/farmacología , Línea Celular Tumoral , Emparejamiento Base , Relación Estructura-Actividad , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/genética , Dicroismo Circular
2.
Biomolecules ; 12(11)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358935

RESUMEN

Neurokinin B is a tachykinin peptide involved in a diverse range of neuronal functions. It rapidly forms an amyloid, which is considered physiologically important for efficient packing into dense core secretory vesicles within hypothalamic neurons. Disassembly of the amyloid is thought to require the presence of copper ions, which interact with histidine at the third position in the peptide sequence. However, it is unclear how the histidine is involved in the amyloid structure and why copper coordination can trigger disassembly. In this work, we demonstrate that histidine contributes to the amyloid structure via π-stacking interactions with nearby phenylalanine residues. The ability of neurokinin B to form an amyloid is dependent on any aromatic residue at the third position in the sequence; however, only the presence of histidine leads to both amyloid formation and rapid copper-induced disassembly.


Asunto(s)
Histidina , Neuroquinina B , Histidina/química , Neuroquinina B/química , Cobre/química , Amiloide/química , Proteínas Amiloidogénicas , Péptidos , Péptidos beta-Amiloides/química
3.
Sci Rep ; 11(1): 20256, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642383

RESUMEN

Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína de Replicación A/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Línea Celular , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Fosforilación/efectos de la radiación , Regulación hacia Arriba
4.
Methods Mol Biol ; 2281: 229-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847962

RESUMEN

Single-stranded DNA-binding proteins (SSBs) are essential to all living organisms as protectors and guardians of the genome. Apart from the well-characterized RPA, humans have also evolved two further SSBs, termed hSSB1 and hSSB2. Over the last few years, we have used NMR spectroscopy to determine the molecular and structural details of both hSSBs and their interactions with DNA and RNA. Here we provide a detailed overview of how to express and purify recombinant versions of these important human proteins for the purpose of detailed structural analysis by high-resolution solution-state NMR.


Asunto(s)
Proteínas de Unión al ADN/genética , Escherichia coli/crecimiento & desarrollo , Proteínas Mitocondriales/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Clonación Molecular , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Fermentación , Humanos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Unión Proteica , ARN Bacteriano/metabolismo , Proteínas Recombinantes/química
5.
Comput Struct Biotechnol J ; 17: 441-446, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30996823

RESUMEN

Single-stranded DNA binding (SSB) proteins are essential to protect singe-stranded DNA (ssDNA) that exists as a result of several important DNA repair pathways in living cells. In humans, besides the well-characterised Replication Protein A (RPA) we have described another SSB termed human SSB1 (hSSB1, OBFC2B) and have shown that this protein is an important player in the maintenance of the genome. In this review we define the structural and biophysical details of how hSSB1 interacts with both DNA and other essential proteins. While the presence of the oligonucleotide/oligosaccharide (OB) domain ensures ssDNA binding by hSSB1, it has also been shown to self-oligomerise as well as interact with and being modified by several proteins highlighting the versatility that hSSB1 displays in the context of DNA repair. A detailed structural understanding of these processes will likely lead to the designs of tailored hSSB1 inhibitors as anti-cancer drugs in the near future.

6.
J Biol Chem ; 293(19): 7160-7175, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29567837

RESUMEN

Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4, and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease, and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET family proteins regulate gene expression are not well defined. In particular, the functions of the other domains such as the ET domain have been less extensively studied. Here, we examine the properties of the ET domain of BRD3 as a protein/protein interaction module. Using a combination of pulldown and biophysical assays, we demonstrate that BRD3 binds to a range of chromatin-remodeling complexes, including the NuRD, BAF, and INO80 complexes, via a short linear "KIKL" motif in one of the complex subunits. NMR-based structural analysis revealed that, surprisingly, this mode of interaction is shared by the AF9 and ENL transcriptional coregulators that contain an acetyl-lysine-binding YEATS domain and regulate transcriptional elongation. This observation establishes a functional commonality between these two families of cancer-related transcriptional regulators. In summary, our data provide insight into the mechanisms by which BET family proteins might link chromatin acetylation to transcriptional outcomes and uncover an unexpected functional similarity between BET and YEATS family proteins.


Asunto(s)
Ensamble y Desensamble de Cromatina , Péptidos/química , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fenómenos Biofísicos , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/fisiología , Homología de Secuencia de Aminoácido , Transactivadores/química , Factores de Transcripción
7.
Nucleic Acids Res ; 45(14): 8609-8620, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28609781

RESUMEN

The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas Mitocondriales/química , Multimerización de Proteína , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Daño del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutación , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína , Electricidad Estática
8.
DNA Repair (Amst) ; 54: 30-39, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28448822

RESUMEN

The maintenance of genomic stability is essential for cellular viability and the prevention of diseases such as cancer. Human single-stranded DNA-binding protein 1 (hSSB1) is a protein with roles in the stabilisation and restart of stalled DNA replication forks, as well as in the repair of oxidative DNA lesions and double-strand DNA breaks. In the latter process, phosphorylation of threonine 117 by the ATM kinase is required for hSSB1 stability and efficient DNA repair. The regulation of hSSB1 in other DNA repair pathways has however remained unclear. Here we report that hSSB1 is also directly phosphorylated by DNA-PK at serine residue 134. While this modification is largely suppressed in undamaged cells by PPP-family protein phosphatases, S134 phosphorylation is enhanced following the disruption of replication forks and promotes cellular survival. Together, these data thereby represent a novel mechanism for hSSB1 regulation following the inhibition of replication.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/química , Humanos , Proteínas Mitocondriales/química , Fosforilación
9.
Sci Rep ; 6: 27446, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27273218

RESUMEN

The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosylase (hOGG1) to damaged DNA. Here we demonstrate that following oxidative stress, hSSB1 is stabilized as an oligomer which is required for hSSB1 to function in the removal of 8-oxoguanine. Monomeric hSSB1 shows a decreased affinity for oxidized DNA resulting in a cellular 8-oxoguanine-repair defect and in the absence of ATM signaling initiation. While hSSB1 oligomerization is important for the removal of 8-oxoguanine from the genome, it is not required for the repair of double-strand DNA-breaks by homologous recombination. These findings demonstrate a novel hSSB1 regulatory mechanism for the repair of damaged DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Secuencia de Aminoácidos , Biopolímeros/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Dimerización , Humanos , Proteínas Mitocondriales/química , Homología de Secuencia de Aminoácido
10.
J Biol Chem ; 291(18): 9411-24, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26893375

RESUMEN

Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.


Asunto(s)
Proteínas Portadoras/química , Dinaminas/química , Neuropéptidos/química , Fosfoproteínas/química , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Ratas , Dominios Homologos src
11.
Nucleic Acids Res ; 43(18): 8817-29, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26261212

RESUMEN

The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Guanina/análogos & derivados , Proteínas Mitocondriales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular , Cromatina/enzimología , Cromatina/metabolismo , Aductos de ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Guanina/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriales/fisiología , Estrés Oxidativo
12.
J Biol Chem ; 288(49): 35180-91, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24097990

RESUMEN

Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Receptores de Ácido Retinoico/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Dedos de Zinc
13.
Protein Sci ; 21(11): 1768-74, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22936624

RESUMEN

LIM-only protein 2, Lmo2, is a regulatory protein that is essential for hematopoietic development and inappropriate overexpression of Lmo2 in T-cells contributes to T-cell leukemia. It exerts its functions by mediating protein-protein interactions and nucleating multicomponent transcriptional complexes. Lmo2 interacts with LIM domain binding protein 1 (Ldb1) through the tandem LIM domains of Lmo2 and the LIM interaction domain (LID) of Ldb1. Here, we present the solution structure of the LIM2 domain of Lmo2 bound to Ldb1(LID) . The ordered regions of Ldb1 in this complex correspond well with binding hotspots previously defined by mutagenic studies. Comparisons of this Lmo2(LIM2) -Ldb1(LID) structure with previously determined structures of the Lmo2/Ldb1(LID) complexes lead to the conclusion that modular binding of tandem LIM domains in Lmo2 to tandem linear motifs in Ldb1 is accompanied by several disorder-to-order transitions and/or conformational changes in both proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Unión al ADN/química , Proteínas con Dominio LIM/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
Mol Microbiol ; 81(5): 1358-73, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21812842

RESUMEN

High-molecular-weight arginine- and lysine-specific (Kgp) gingipains are essential virulence factors expressed by the oral pathogen Porphyromonas gingivalis. Haemagglutinin/adhesin (HA) regions of these proteases have been implicated in targeting catalytic domains to biological substrates and in other adhesive functions. We now report the crystal structure of the K3 adhesin domain/module of Kgp, which folds into the distinct ß-jelly roll sandwich topology previously observed for K2. A conserved structural feature of K3, previously observed in the Kgp K2 module, is the half-way point anchoring of the surface exposed loops via an arginine residue found in otherwise highly variable sequences. Small-angle X-ray scattering data for the recombinant construct K1K2K3 confirmed a structure comprising a tandem repeat of three homologous modules, K1, K2 and K3 while also indicating an unusual 'y'-shape arrangement of the modules connected by variable linker sequences. Only the K2 and K3 modules and a K1K2 construct were observed to be potently haemolytic. K2, K3 and the K1K2 construct showed preferential recognition of haem-albumin over albumin whereas only low affinity binding was detected for K1 and the K1K2K3 construct. The data indicate replication of some biological functions over the three adhesin domains of Kgp while other functions are restricted.


Asunto(s)
Adhesinas Bacterianas/química , Cisteína Endopeptidasas/química , Hemaglutininas/química , Porphyromonas gingivalis/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/ultraestructura , Albúminas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Membrana Celular , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/ultraestructura , Cisteína-Endopeptidasas Gingipaínas , Hemaglutininas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Porphyromonas gingivalis/metabolismo , Unión Proteica , Subunidades de Proteína/química , Alineación de Secuencia , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
15.
Mol Pharmacol ; 80(5): 796-808, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21825095

RESUMEN

Acid-sensing ion channel 1a (ASIC1a) is a primary acid sensor in the peripheral and central nervous system. It has been implicated as a novel therapeutic target for a broad range of pathophysiological conditions including pain, ischemic stroke, depression, and autoimmune diseases such as multiple sclerosis. The only known selective blocker of ASIC1a is π-TRTX-Pc1a (PcTx1), a disulfide-rich 40-residue peptide isolated from spider venom. π-TRTX-Pc1a is an effective analgesic in rodent models of acute pain and it provides neuroprotection in a mouse model of ischemic stroke. Thus, understanding the molecular basis of the π-TRTX-Pc1a-ASIC1a interaction should facilitate development of therapeutically useful ASIC1a blockers. We therefore developed an efficient bacterial expression system to produce a panel of π-TRTX-Pc1a mutants for probing structure-activity relationships as well as isotopically labeled toxin for determination of its solution structure and dynamics. We demonstrate that the toxin pharmacophore resides in a ß-hairpin loop that was revealed to be mobile over a wide range of time scales using molecular dynamics simulations in combination with NMR spin relaxation and relaxation dispersion measurements. The toxin-receptor interaction was modeled by in silico docking of the toxin structure onto a homology model of rat ASIC1a in a restraints-driven approach that was designed to take account of the dynamics of the toxin pharmacophore and the consequent remodeling of side-chain conformations upon receptor binding. The resulting model reveals new insights into the mechanism of action of π-TRTX-Pc1a and provides an experimentally validated template for the rational design of therapeutically useful π-TRTX-Pc1a mimetics.


Asunto(s)
Proteínas del Tejido Nervioso/antagonistas & inhibidores , Venenos de Araña/farmacología , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Resonancia Magnética Nuclear Biomolecular , Péptidos , Mutación Puntual , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Homología de Secuencia de Aminoácido , Canales de Sodio/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Venenos de Araña/química , Venenos de Araña/genética
16.
Proc Natl Acad Sci U S A ; 108(35): 14443-8, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21844373

RESUMEN

The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.


Asunto(s)
Proteínas de Unión al ADN/química , Factor de Transcripción GATA1/química , Metaloproteínas/química , Proteínas Nucleares/química , Factores de Transcripción/química , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales , Unión Competitiva , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA1/metabolismo , Proteínas con Dominio LIM , Metaloproteínas/metabolismo , Modelos Anatómicos , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas , Factores de Transcripción/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(22): E159-68, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21536911

RESUMEN

Acetylation of histones triggers association with bromodomain-containing proteins that regulate diverse chromatin-related processes. Although acetylation of transcription factors has been appreciated for some time, the mechanistic consequences are less well understood. The hematopoietic transcription factor GATA1 is acetylated at conserved lysines that are required for its stable association with chromatin. We show that the BET family protein Brd3 binds via its first bromodomain (BD1) to GATA1 in an acetylation-dependent manner in vitro and in vivo. Mutation of a single residue in BD1 that is involved in acetyl-lysine binding abrogated recruitment of Brd3 by GATA1, demonstrating that acetylation of GATA1 is essential for Brd3 association with chromatin. Notably, Brd3 is recruited by GATA1 to both active and repressed target genes in a fashion seemingly independent of histone acetylation. Anti-Brd3 ChIP followed by massively parallel sequencing in GATA1-deficient erythroid precursor cells and those that are GATA1 replete revealed that GATA1 is a major determinant of Brd3 recruitment to genomic targets within chromatin. A pharmacologic compound that occupies the acetyl-lysine binding pockets of Brd3 bromodomains disrupts the Brd3-GATA1 interaction, diminishes the chromatin occupancy of both proteins, and inhibits erythroid maturation. Together these findings provide a mechanism for GATA1 acetylation and suggest that Brd3 "reads" acetyl marks on nuclear factors to promote their stable association with chromatin.


Asunto(s)
Células Eritroides/citología , Factor de Transcripción GATA1/química , Regulación de la Expresión Génica , Histonas/química , Proteínas Nucleares/química , Acetilación , Animales , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Ratones , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Factores de Transcripción
18.
Mol Cell Biol ; 31(13): 2632-40, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21555453

RESUMEN

Recent data demonstrate that small synthetic compounds specifically targeting bromodomain proteins can modulate the expression of cancer-related or inflammatory genes. Although these studies have focused on the ability of bromodomains to recognize acetylated histones, it is increasingly becoming clear that histone-like modifications exist on other important proteins, such as transcription factors. However, our understanding of the molecular mechanisms through which these modifications modulate protein function is far from complete. The transcription factor GATA1 can be acetylated at lysine residues adjacent to the zinc finger domains, and this acetylation is essential for the normal chromatin occupancy of GATA1. We have recently identified the bromodomain-containing protein Brd3 as a cofactor that interacts with acetylated GATA1 and shown that this interaction is essential for the targeting of GATA1 to chromatin. Here we describe the structural basis for this interaction. Our data reveal for the first time the molecular details of an interaction between a transcription factor bearing multiple acetylation modifications and its cognate recognition module. We also show that this interaction can be inhibited by an acetyllysine mimic, highlighting the importance of further increasing the specificity of compounds that target bromodomain and extraterminal (BET) bromodomains in order to fully realize their therapeutic potential.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Proteínas de Unión al ARN/metabolismo , Acetilación , Secuencia de Aminoácidos , Factor de Transcripción GATA1/antagonistas & inhibidores , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Lisina/genética , Lisina/metabolismo , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA