Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Commun Biol ; 4(1): 1333, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824367

RESUMEN

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.


Asunto(s)
Epigénesis Genética , Genoma , Chaperonas Moleculares/genética , Neoplasias/genética , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Animales , Femenino , Xenoinjertos , Humanos , Ratones , Transducción de Señal
2.
Cell Rep ; 31(13): 107840, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610141

RESUMEN

Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Línea Celular Tumoral , Citosol/metabolismo , Glicosilación , Proteínas HSP70 de Choque Térmico/química , Humanos , Proteínas de la Membrana/química , Ratones Endogámicos NOD , Peso Molecular , Neoplasias/metabolismo , Oncogenes , Polisacáridos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA