Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nano Lett ; 20(9): 6732-6737, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787168

RESUMEN

Super-resolution microscopy is transforming research in the life sciences by enabling the visualization of structures and interactions on the nanoscale. DNA-PAINT is a relatively easy-to-implement single-molecule-based technique, which uses the programmable and transient interaction of dye-labeled oligonucleotides with their complements for super-resolution imaging. However, similar to many imaging approaches, it is still hampered by the subpar performance of labeling probes in terms of their large size and limited labeling efficiency. To overcome this, we here translate the programmability and transient binding nature of DNA-PAINT to coiled coil interactions of short peptides and introduce Peptide-PAINT. We benchmark and optimize its binding kinetics in a single-molecule assay and demonstrate its super-resolution capability using self-assembled DNA origami structures. Peptide-PAINT outperforms classical DNA-PAINT in terms of imaging speed and efficiency. Finally, we prove the suitability of Peptide-PAINT for cellular super-resolution imaging by visualizing the microtubule and vimentin network in fixed cells.


Asunto(s)
ADN , Oligonucleótidos , Microscopía Fluorescente , Nanotecnología , Péptidos
2.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31629658

RESUMEN

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/química , Sitios de Unión/genética , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Cromosomas/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Humanos , Complejos Multiproteicos/fisiología , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , Cohesinas
3.
Chembiochem ; 20(8): 1032-1038, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30589198

RESUMEN

Current optical super-resolution implementations are capable of resolving features spaced just a few nanometers apart. However, translating this spatial resolution to cellular targets is limited by the large size of traditionally employed primary and secondary antibody reagents. Recent advancements in small and efficient protein binders for super-resolution microscopy, such as nanobodies or aptamers, provide an exciting avenue for the future; however, their widespread availability is still limited. To address this issue, here we report the combination of bacterial-derived binders commonly used in antibody purification with DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy. The small sizes of these protein binders, relative to secondary antibodies, make them an attractive labeling alternative for emerging superresolution techniques. We present here a labeling protocol for DNA conjugation of bacterially derived proteins A and G for DNA-PAINT, having assayed their intracellular performance by targeting primary antibodies against tubulin, TOM20, and the epidermal growth factor receptor (EGFR) and quantified the increases in obtainable resolution.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Bacterias/inmunología , ADN/química , Microscopía Fluorescente/métodos , Línea Celular Tumoral , Humanos , Unión Proteica
4.
Science ; 360(6384): 102-105, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29472443

RESUMEN

It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Unión al ADN/química , ADN/química , Complejos Multiproteicos/química , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Imagen Individual de Molécula/métodos , Adenosina Trifosfato/química , Hidrólisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA