Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Ther Med ; 22(1): 679, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33986844

RESUMEN

High mobility group box 1 (HMGB1) has been reported to regulate the sensitivity of several types of cancer cell to chemoradiotherapy. The present study aimed to investigate the changes in HMGB1 expression after radiotherapy, as well as its regulatory role in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. The expression levels of HMGB1 in the serum of 73 patients with NSCLC were analyzed by ELISA. HMGB1 mRNA and microRNA (miR)-107 expression in NSCLC cells were assessed using reverse transcription-quantitative PCR. Receiver operating characteristic analysis was used to evaluate the diagnostic value of HMGB1. Cell counting kit-8, Transwell invasion and clonogenic assays were used to determine cellular viability, invasiveness and colony formation ability, respectively. Following radiotherapy, the levels of HMGB1 were significantly decreased in the serum of patients with NSCLC, and lower serum levels had relatively high diagnostic accuracy in radiosensitive patients. Furthermore, HMGB1-knockdown retarded cellular proliferation and invasion with or without irradiation, and enhanced NSCLC cell radiosensitivity. Furthermore, knocking down miR-107 reversed the decreases in cellular proliferation and invasiveness both with and without irradiation, and reduced the survival fractions induced by sh-HMGB1. HMGB1-knockdown leads to radiosensitivity that may result from suppression of the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, decreased expression of HMGB1 was found to be a putative diagnostic predictor of radiosensitivity in patients with NSCLC. HMGB1-knockdown inhibited the proliferation and enhanced the radiosensitivity of NSCLC cells, which may be regulated via miR-107 by mediating the TLR4/NF-κB signaling pathway. Thus, HMGB1 may be a potential regulator of radioresistance in NSCLC, and the HMGB1/miR-107 axis may represent a promising therapeutic target.

2.
Onco Targets Ther ; 11: 4511-4523, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30122943

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) has one of the highest mortality rates among cancers worldwide, with a poor prognosis. Previous studies have reported that melittin, an active component of apitoxin, exerts anti-inflammatory and antitumor effects via vascular endothelial growth factor or FoxO1. METHODS: CCK8, flow cytometry assay and Western blotting were performed to evaluate the effect of melittin on NSCLC. RESULTS: The present study demonstrates that melittin activated caspase-2 by inhibiting miR-183 expression and, thus, induced NSCLC apoptosis in both NCI-H441 cancer cell line assays and an in vivo xenograft model. The results of the cell-based assays showed that melittin (2 µg/mL) robustly suppressed miR-183 expression level and resulted in decreased invasion and migration abilities of NCI-H441 cells. Additionally, a flow cytometry assay and Western blotting showed that melittin induced NSCLC NCI-H441 cell apoptosis along with significant elevation of caspase-2 and Bax, which are regulators of cell apoptosis, and reduced Bcl-2 protein expression compared with dimethyl sulfoxide control. Furthermore, subcutaneous injection of melittin (5 mg/kg) significantly suppressed NSCLC tumor growth compared with vehicle group tumors, determined through tumor size and weight. CONCLUSION: Taken together, the aforementioned findings contribute to identification of a novel therapeutic target in the treatment of NSCLC, in patients diagnosed with a high expression of miR-183. Moreover, this article provides solid evidence for the inhibitory effect of melittin on NSCLC cancer cell growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA