Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cardiovasc Res ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288197

RESUMEN

AIMS: ß3-AR (ß3-adrenergic receptor) is essential for cardiovascular homeostasis through regulating adipose tissue function. Perivascular adipose tissue (PVAT) has been implicated in the pathogenesis of aortic dissection and aneurysm (AD/AA). Here, we aim to investigate ß3-AR activation-mediated PVAT function in AD/AA. METHODS AND RESULTS: Aortas from patients with thoracic aortic dissection (TAD) were collected to detect ß3-AR expression in PVAT. ApoE-/- and ß-aminopropionitrile monofumarate (BAPN)-treated C57BL/6 mice were induced with Angiotensin II (AngII) to simulate AD/AA, and subsequently received either placebo or mirabegron, a ß3-AR agonist. The results demonstrated an up-regulation of ß3-AR in PVAT of TAD patients and AD/AA mice. Moreover, activation of ß3-AR by mirabegron significantly prevented AngII-induced AD/AA formation in mice. RNA-sequencing analysis of adipocytes from PVAT revealed a notable increase of the lymphangiogenic factor VEGF-C in mirabegron-treated mice. Consistently, enhanced lymphangiogenesis was found in PVAT with mirabegron treatment. Mechanistically, the number of CD4+/CD8+ T cells and CD11c+ cells was reduced in PVAT but increased in adjacent draining lymph nodes (LNs) of mirabegron-treated mice, indicating the improved draining and clearance of inflammatory cells in PVAT by lymphangiogenesis. Importantly, adipocyte-specific VEGF-C knockdown by the adeno-associated virus system restrained lymphangiogenesis and exacerbated inflammatory cell infiltration in PVAT, which ultimately abolished the protection of mirabegron on AD/AA. In addition, the conditional medium derived from mirabegron-treated adipocytes activated the proliferation and tube formation of lymphatic endothelial cells (LECs), which was abrogated by the silencing of VEGF-C in adipocytes. CONCLUSIONS: Our findings illustrated the therapeutic potential of ß3-AR activation by mirabegron on AD/AA, which promoted lymphangiogenesis by increasing adipocyte-derived VEGF-C and, therefore, ameliorated PVAT inflammation.

2.
Blood Press Monit ; 29(5): 242-248, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958504

RESUMEN

OBJECTIVES: To determine the independent effect of high-sensitivity C-reactive protein (hs-CRP) and the combined effects of hs-CRP and other traditional risk factors on microalbuminuria in hypertensive patients during the 3-year follow-up period. METHODS AND RESULTS: Baseline hs-CRP levels and other risk factors were measured in 280 adults in 2007. In the third year of examination, 199 patients (mean age 62.5 ±â€…9.5, men 59.3%) were approached for the measurement of microalbuminuria. The subjects were classified into two groups by the median of baseline hs-CRP. Compared to the patients with baseline hs-CRP below the median group ( n  = 99, 50%), the group with baseline hs-CRP above the median ( n  = 100, 50%) had higher urinary albumin-to-creatinine ratio (ACR) ( P  = 0.007) at the end of follow-up period. ACR at the end of follow-up period was significantly correlated with baseline diabetes ( ß = 0.342; P  < 0.001), baseline SBP ( ß = 0.148; P  = 0.02), and baseline log-transformed hs-CRP ( ß = 0.169; P  = 0.01), while adversely correlated with baseline estimated glomerular filtration rate (eGFR) ( ß = -0.163; P  = 0.02) in multivariate stepwise linear analysis. In addition, ACR change during follow-up period was significantly correlated with baseline diabetes ( ß = 0.359; P  < 0.001) and baseline log-transformed hs-CRP ( ß = 0.190; P  = 0.004) in multivariate stepwise linear analysis. The combined effects of baseline hs-CRP and conventional risk factors, such as male sex, diabetes, smoking status, hyperlipidemia, hyperuricemia, and mildly reduced eGFR had a greater risk for microalbuminuria progression. There was no difference in eGFR changes during the follow-up period between two groups. CONCLUSION: Our findings offer a new piece of evidence on the predictive value of baseline hs-CRP for microalbuminuria progression in essential hypertensive patients, and highlight those who combined with traditional cardiovascular risk factors had a greater risk for developing microalbuminuria.


Asunto(s)
Albuminuria , Proteína C-Reactiva , Hipertensión , Humanos , Albuminuria/fisiopatología , Masculino , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Femenino , Persona de Mediana Edad , Estudios de Seguimiento , Anciano , Hipertensión/fisiopatología , Factores de Riesgo , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Hipertensión Esencial/fisiopatología , Hipertensión Esencial/complicaciones , Hipertensión Esencial/sangre , Hipertensión Esencial/orina
3.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572787

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Enfermedades Renales , Ratones , Humanos , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Aldosterona/efectos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Acetatos/efectos adversos , Acetatos/metabolismo , Fibrosis
4.
Sci Adv ; 9(14): eade4110, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018396

RESUMEN

The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. Hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. In addition, an upstreaming acute interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte Il6 receptor deficiency and Stat3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL-6/STAT3/MR/FGF21 signaling axis that mediates heart-liver cross-talk during MI. Targeting the signaling axis and the cross-talk could provide new strategies to treat MI and heart failure.


Asunto(s)
Interleucina-6 , Infarto del Miocardio , Humanos , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Infarto del Miocardio/metabolismo , Hígado/metabolismo , Receptores de Interleucina-6/metabolismo
5.
J Hypertens ; 41(4): 638-647, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723459

RESUMEN

OBJECTIVES: The aim of this study was to investigate the clinical characteristics of renal artery fibromuscular dysplasia (FMD) in patients in China and identify the cure rate of hypertension after angioplasty. METHODS: Consecutive hypertensive patients with renal artery stenosis caused by FMD who underwent catheter-based angiography, and were followed at two Chinese referral centres, were retrospectively analysed. All patients underwent a detailed investigation, including demographic characteristics, clinical characteristics, biochemical sampling, Doppler ultrasonography of carotid arteries, magnetic resonance angiography (MRA) of the intracranial artery, and CTA or MRA of the abdominal artery and catheter-based renal angiography. Patients were routinely followed up at 1 month, 6 months and every year after the procedure. RESULTS: Among 245 study participants, with a mean diagnosed age of 26.9 ±â€Š9.9 years, 137 (55.9%) were women, and 38 (15.5%) were children. All patients were diagnosed with hypertension at a mean age of 23.4 ±â€Š8.4 years. There were 73.5% focal and 15.2% multivessel cases. Aneurysms, arterial dissections and total occlusions were found in 21.6, 4.1 and 12.2% of patients, respectively. Patients with multifocal FMD were older (26.0 vs. 23.7 years, P  = 0.021) and more often female (70.8 vs. 50.6%, P  = 0.004). Among children with renal FMD, 55.2% were men, and 86.8% were focal. After a median follow-up of 7.0 years, multifocal FMD had a higher cure rate of hypertension than focal FMD after revascularization (71.7 vs. 55.8%, P  = 0.032). CONCLUSION: In a cohort of mostly young Chinese patients, the prevalence of hypertension associated with renal FMD is similar in both sexes. Focal FMDs were more frequent than the multifocal ones and, after angioplasty, were associated with a worse blood pressure outcome.


Asunto(s)
Displasia Fibromuscular , Hipertensión Renovascular , Hipertensión , Obstrucción de la Arteria Renal , Masculino , Niño , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Hipertensión Renovascular/epidemiología , Hipertensión Renovascular/etiología , Displasia Fibromuscular/complicaciones , Displasia Fibromuscular/epidemiología , Prevalencia , Estudios Retrospectivos , Hipertensión/epidemiología , Angiografía por Resonancia Magnética/efectos adversos , Obstrucción de la Arteria Renal/complicaciones , Obstrucción de la Arteria Renal/diagnóstico por imagen , Obstrucción de la Arteria Renal/epidemiología , Arterias Carótidas
6.
Cell Rep ; 42(2): 112078, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36735535

RESUMEN

Complement activation is thought to underline the pathologic progression of obesity-related metabolic disorders; however, its role in adaptive thermogenesis has scarcely been explored. Here, we identify complement C3a receptor (C3aR) and C5a receptor (C5aR) as critical switches to control adipocyte browning and energy balance in male mice. Loss of C3aR and C5aR in combination, more than individually, increases cold-induced adipocyte browning and attenuates diet-induced obesity in male mice. Mechanistically, loss of C3aR and C5aR increases regulatory T cell (Treg) accumulation in the subcutaneous white adipose tissue during cold exposure or high-fat diet. Activated Tregs produce adenosine, which is converted to inosine by adipocyte-derived adenosine deaminases. Inosine promotes adipocyte browning in a manner dependent on activating adenosine A2a receptor. These data reveal a regulatory mechanism of complement in controlling adaptive thermogenesis and suggest that targeting the C3aR/C5aR pathways may represent a therapeutic strategy in treating obesity-related metabolic diseases.


Asunto(s)
Receptor de Anafilatoxina C5a , Transducción de Señal , Animales , Masculino , Ratones , Adipocitos , Dieta , Obesidad , Receptor de Anafilatoxina C5a/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 834409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444613

RESUMEN

Background: Adrenal venous sampling (AVS) is recognized as the gold standard for subtyping primary aldosteronism (PA), but its invasive nature and technical challenges limit its availability. A recent study reported that sodium chloride cotransporter (NCC) in urinary extracellular vesicles (uEVs) is a promising marker for assessing the biological activity of aldosterone and can be treated as a potential biomarker of PA. The current study was conducted to verify the hypothesis that the expression of NCC and its phosphorylated form (pNCC) in uEVs are different in various subtypes and genotypes of PA and can be used to select AVS candidates. Methods: A total of 50 patients with PA were enrolled in the study. Urinary extracellular vesicles (uEVs) were isolated from spot urine samples using ultracentrifugation. NCC and pNCC expressions were tested in patients diagnosed with PA who underwent AVS. Sanger sequencing of KCNJ5 was performed on DNA extracted from adrenal adenoma. Results: pNCC (1.89 folds, P<.0001) and NCC (1.82 folds, P=0.0002) was more abundant in the uEVs in the high lateralization index (h-LI, ≥ 4) group than in the low LI (l-LI, < 4) group. Carriers of the somatic KCNJ5 mutations, compared with non-carriers, had more abundant pNCC expression (2.16 folds, P=0.0039). Positive correlation between pNCC abundance and plasma aldosterone level was found in this study (R = 0.1220, P = 0.0129). Conclusions: The expression of pNCC in uEVs in patients with PA with various subtypes and genotypes was different. It can be used as biomarker of AVS for PA subtyping.


Asunto(s)
Vesículas Extracelulares , Hiperaldosteronismo , Aldosterona/metabolismo , Biomarcadores/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/metabolismo , Simportadores del Cloruro de Sodio/metabolismo
8.
Front Endocrinol (Lausanne) ; 12: 728595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630330

RESUMEN

A 29-year-old female patient diagnosed with primary aldosteronism (PA) in 2004 underwent complete adrenalectomy for left aldosterone-producing adenoma (APA) confirmed by hematoxylin and eosin (HE) and CYP11B2 staining. Her hypokalemia was corrected, and her blood pressure (BP) normalized and maintained without medication for 10 years. In 2014, her BP became elevated again, and a recurrence of PA with an adenoma on the right adrenal gland was discovered by computed tomography scan. She underwent partial right adrenalectomy in 2018 due to unsatisfactory BP control with medication and gradually enlarging adenoma. The resected adrenal tissue contained a CYP11B2 staining positive APA. Her BP was then controlled by two drugs. Sanger sequencing of DNA extracted from tissue slices revealed that both left and right adenomas carried the same aldosterone-driver KCNJ5 gene mutation, but with different nucleotide changes. We suggest that patients who undergo adrenalectomy for APA should be followed up for life.


Asunto(s)
Adenoma/cirugía , Adrenalectomía/efectos adversos , Aldosterona/metabolismo , Hiperaldosteronismo/patología , Adenoma/metabolismo , Adenoma/patología , Adulto , Femenino , Humanos , Hiperaldosteronismo/etiología , Hiperaldosteronismo/metabolismo , Pronóstico
9.
Nat Commun ; 12(1): 6202, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707103

RESUMEN

Pre-metastatic niche formation is critical for the colonization of disseminated cancer cells in distant organs. Here we find that lung mesenchymal stromal cells (LMSCs) at pre-metastatic stage possess potent metastasis-promoting activity. RNA-seq reveals an upregulation of complement 3 (C3) in those LMSCs. C3 is found to promote neutrophil recruitment and the formation of neutrophil extracellular traps (NETs), which facilitate cancer cell metastasis to the lungs. C3 expression in LMSCs is induced and sustained by Th2 cytokines in a STAT6-dependent manner. LMSCs-driven lung metastasis is abolished in Th1-skewing Stat6-deficient mice. Blockade of IL-4 by antibody also attenuates LMSCs-driven cancer metastasis to the lungs. Consistently, metastasis is greatly enhanced in Th2-skewing T-bet-deficient mice or in nude mice adoptively transferred with T-bet-deficient T cells. Increased C3 levels are also detected in breast cancer patients. Our results suggest that targeting the Th2-STAT6-C3-NETs cascade may reduce breast cancer metastasis to the lungs.


Asunto(s)
Complemento C3/inmunología , Citocinas/inmunología , Pulmón/patología , Células Madre Mesenquimatosas/patología , Metástasis de la Neoplasia/inmunología , Neutrófilos/inmunología , Células Th2/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Complemento C3/metabolismo , Trampas Extracelulares , Femenino , Humanos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Infiltración Neutrófila , Factor de Transcripción STAT6/inmunología , Transducción de Señal , Microambiente Tumoral/inmunología
10.
J Am Heart Assoc ; 10(16): e020554, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34350769

RESUMEN

Background Adventitial remodeling is a pathological hallmark of hypertension that results in target organ damage. Activated adventitial fibroblasts have emerged as critical regulators in this process, but the precise mechanism remains unclear. Methods and Results Interleukin 11 (IL-11) knockout and wild-type mice were subjected to angiotensin II (Ang II) infusion to establish models of hypertension-associated vascular remodeling. IL-11 mRNA and protein were increased especially in the adventitia in response to Ang II. Compared with wild-type mice, Ang II-treated IL-11 knockout mice showed amelioration of vascular hypertrophy, adventitial fibrosis, macrophage infiltration, and inflammatory factor expression. Recombination mouse IL-11 exacerbated adventitial fibrosis in Ang II-infused wild-type mice. Interestingly, IL-11 neutralizing antibody attenuated adventitial fibrosis, macrophage infiltration, and inflammatory factor expression after Ang II infusion for 7 days. Mechanistically, in primary cultured adventitial fibroblasts, Krüppel-like factor 15 negatively regulated Ang II-induced IL-11 expression. Ang II increased extracellular signal-regulated kinases 1 and 2 activation, especially in adventitia, and caused biphasic extracellular signal-regulated kinases 1 and 2 activation in adventitial fibroblasts. A rapid and early activation increased IL-11 production through decreasing Krüppel-like factor 15 expression, which, in turn, induced the second extracellular signal-regulated kinases 1 and 2 activation, resulting in posttranscriptional profibrotic gene expression. Conclusions These results demonstrate that extracellular signal-regulated kinases 1 and 2 activation is important for Krüppel-like factor 15-mediated IL-11 expression in adventitial fibroblasts to promote adventitial remodeling in Ang II-induced hypertension. Therefore, targeting the Krüppel-like factor 15/IL-11 axis might serve as a new therapeutic strategy for vascular diseases.


Asunto(s)
Adventicia/enzimología , Aorta Torácica/enzimología , Fibroblastos/enzimología , Hipertensión/enzimología , Interleucina-11/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Remodelación Vascular , Adventicia/patología , Angiotensina II , Animales , Aorta Torácica/patología , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Células HEK293 , Humanos , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/patología , Mediadores de Inflamación/metabolismo , Interleucina-11/genética , Factores de Transcripción de Tipo Kruppel/genética , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Sprague-Dawley , Transducción de Señal
11.
J Exp Med ; 218(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34236404

RESUMEN

Obesity-induced secretory disorder of adipose tissue-derived factors is important for cardiac damage. However, whether platelet-derived growth factor-D (PDGF-D), a newly identified adipokine, regulates cardiac remodeling in angiotensin II (AngII)-infused obese mice is unclear. Here, we found obesity induced PDGF-D expression in adipose tissue as well as more severe cardiac remodeling compared with control lean mice after AngII infusion. Adipocyte-specific PDGF-D knockout attenuated hypertensive cardiac remodeling in obese mice. Consistently, adipocyte-specific PDGF-D overexpression transgenic mice (PA-Tg) showed exacerbated cardiac remodeling after AngII infusion without high-fat diet treatment. Mechanistic studies indicated that AngII-stimulated macrophages produce urokinase plasminogen activator (uPA) that activates PDGF-D by splicing full-length PDGF-D into the active PDGF-DD. Moreover, bone marrow-specific uPA knockdown decreased active PDGF-DD levels in the heart and improved cardiac remodeling in HFD hypertensive mice. Together, our data provide for the first time a new interaction pattern between macrophage and adipocyte: that macrophage-derived uPA activates adipocyte-secreted PDGF-D, which finally accelerates AngII-induced cardiac remodeling in obese mice.


Asunto(s)
Linfocinas/metabolismo , Obesidad/fisiopatología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Remodelación Ventricular/fisiología , Adipocitos/metabolismo , Adipocitos/patología , Angiotensina II/farmacología , Animales , Corazón/efectos de los fármacos , Hipertensión/genética , Hipertensión/fisiopatología , Linfocinas/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Ratones Transgénicos , Miocardio/patología , Obesidad/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética
12.
Redox Biol ; 36: 101671, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32829253

RESUMEN

In the present study, we hypothesized that hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy plays a protective role in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Mitophagy was evaluated by measuring the changes of mitophagy flux, mitochondria DNA copy number, and the changes of mitophagy-related proteins including translocase of outer mitochondrial membrane 20 (TOMM20), cytochrome c oxidase IV (COX IV), microtubule-associated protein 1 light chain 3B (LC3B), and mitochondria adaptor nucleoporin p62 in HK2 cells, a human tubular cell line. Results show that HIF-1α knockout significantly attenuated hypoxia/reoxygenation (H/R)-induced mitophagy, aggravated H/R-induced apoptosis, and increased the production of reactive oxygen species (ROS). Similarly, H/R induced significantly increase in Bcl-2 19-kDa interacting protein 3 (BNIP3), a downstream regulator of HIF-1α. Notably, BNIP3 overexpression reversed the inhibitory effect of HIF-1α knockout on H/R-induced mitophagy, and prevented the enhancing effect of HIF-1α knockout on H/R-induced apoptosis and ROS production. For in vivo study, we established HIF-1αflox/flox; cadherin-16-cre mice in which tubular HIF-1α was specifically knockout. It was found that tubular HIF-1α knockout significantly inhibited I/R-induced mitophagy, and aggravated I/R-induced tubular apoptosis and kidney damage. In contrast, adenovirus-mediated BNIP3 overexpression significantly reversed the decreased mitophagy, and prevented enhanced kidney damage in tubular HIF-1α knockout mice with I/R injury. In summary, our study demonstrated that HIF-1α-BNIP3-mediated mitophagy in tubular cells plays a protective role through inhibition of apoptosis and ROS production in acute kidney damage.


Asunto(s)
Mitofagia , Daño por Reperfusión , Animales , Apoptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
13.
Curr Med Sci ; 40(2): 320-326, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32337692

RESUMEN

Vascular remodeling is an adaptive response to various stimuli, including mechanical forces, inflammatory cytokines and hormones. In the present study, we investigated the role of angiotensin II type 1 receptor (AT1R) and calcium channel in carotid artery remodeling in response to increased biomechanical forces by using the transverse aortic constriction (TAC) rat model. TAC was induced on ten-week-old male Sprague-Dawley rats and these models were treated with AT1R blocker olmesartan (1 mg/kg/day) or/and calcium channel blocker (CCB) amlodipine (0.5 mg/kg/day) for 14 days. After the treatment, the right common carotid artery proximal to the band (RCCA-B) was collected for further assay. Results showed that olmesartan, but not amlodipine, significantly prevented TAC-induced adventitial hyperplasia. Similarly, olmesartan, but not amlodipine, signifcantly prevented vascular infammation, as indicated by increased tumor necrosis factor α (TNF-α) and increased p65 phosphorylation, an indicator of nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activation in RCCA-B. In contrast, both olmesartan and amlodipine reversed the decreased expression of endothelial nitric oxidase synthase (eNOS) and improved endothelium-dependent vasodilation, whereas combination of olmesartan and amlodipine showed no further synergistic protective effects. These results suggest that AT1R was involved in vascular remodeling and inflammation in response to pressure overload, whereas AT1R and subsequent calcium channel were involved in endothelial dysfunction.


Asunto(s)
Amlodipino/administración & dosificación , Canales de Calcio/metabolismo , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Traumatismos de las Arterias Carótidas/metabolismo , Imidazoles/administración & dosificación , Receptor de Angiotensina Tipo 1/metabolismo , Tetrazoles/administración & dosificación , Amlodipino/farmacología , Animales , Traumatismos de las Arterias Carótidas/etiología , Constricción Patológica , Modelos Animales de Enfermedad , Hiperplasia , Imidazoles/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Tetrazoles/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación Vascular
14.
Artículo en Inglés | MEDLINE | ID: mdl-32087969

RESUMEN

Hypertensive cardiac remodeling is a constellation of abnormalities that includes cardiomyocyte hypertrophy and death and tissue fibrosis. Adenosine is a long-known vasodilator, through interacting with its four cell surface receptor subtypes in cardiovascular system. However, it is unclear that whether adenosine A2A receptor (A2AR) activation is involved in the cardiac remodeling in hypertension. WT mice were utilized to induce DOCA-salt sensitive hypertension and received A2AR agonist CGS21680 or antagonist KW6002 treatment. Cardiac functional phenotyping measurement by echocardiography showed that CGS21680 improved cardiac dysfunction in DOCA-salt mice. Moreover, CGS21680 reduced cardiomyocyte hypertrophy, cardiac inflammation and fibrosis. However, iBAT depletion surgery induces dramatic cardiac remodeling in DOCA-salt mice, and the protective function of CGS21680 was blocked without intact iBAT. Mechanistically, A2AR agonist CGS21680 increased iBAT-derived fibroblast growth factor 21 (FGF21). Our data suggest that activation of A2AR could be a potential therapeutic strategy in preventing heart damage in hypertension.

15.
Cardiovasc Res ; 116(3): 708-720, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241138

RESUMEN

AIMS: Adventitial vasa vasorum provides oxygen and nourishment to the vascular wall, but whether it regulates vascular disease remains unclear. We have previously shown that an increased expression of VEGF (vascular endothelial growth factor) is associated with macrophage infiltration. This study aims to determine whether adventitial fibroblast (AF)-derived VEGF increases the number of vasa vasorum contributing to neointima formation through macrophage recruitment. METHODS AND RESULTS: In rat balloon injury model, vasa vasorum count was increased particularly in the adventitia accompanied by cell proliferation and VEGF expression. Both endogenous and PKH26-labelled exogenous macrophages were mainly distributed in adventitia around vasa vasorum. Interestingly, perivascular delivery of Ranibizumab preferentially concentrated in adventitia resulted in a decrease of neointima formation with concurrent reduction of vasa vasorum count and macrophage infiltration. AFs with adenovirus-mediated VEGF over-expression delivered to the adventitia significantly enhanced these pathological changes after injury. In Tie2-cre/Rosa-LoxP-RFP mice, endothelial cells were increased in the adventitia after wire injury. By using multiphoton laser scanning microscopy, macrophage rolling, adhesion and transmigration were observed in vasa vasorum. Moreover, adoptive transfer of macrophages accelerated injury-induced neointima formation. VEGF-neutralizing antibody administration also attenuated wire injury-induced neointima formation and macrophage infiltration. In primary cultured AFs, exogenous VEGF increased VEGF expression and secretion in a time- and dose-dependent manner. AF-conditioned medium promoted endothelial cell angiogenesis, vascular cell adhesion molecule-1 expression and macrophage adhesion was blocked by VEGF-neutralizing antibody and VEGFR2 inhibitor ZM323881, which also inhibited activation of VEGFR2/ERK1/2 pathway. CONCLUSION: These results demonstrate that AF-derived VEGF plays a significant role in the increase of vasa vasorum count which is involved in macrophage recruitment and neointima formation.


Asunto(s)
Adventicia/metabolismo , Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Arteria Femoral/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , Neointima , Vasa Vasorum/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Lesiones del Sistema Vascular/metabolismo , Traslado Adoptivo , Adventicia/efectos de los fármacos , Adventicia/patología , Inhibidores de la Angiogénesis/farmacología , Animales , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/prevención & control , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Arteria Femoral/efectos de los fármacos , Arteria Femoral/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Macrófagos/trasplante , Masculino , Ratones Endogámicos C57BL , Comunicación Paracrina , Ratas Sprague-Dawley , Transducción de Señal , Técnicas de Cultivo de Tejidos , Vasa Vasorum/efectos de los fármacos , Vasa Vasorum/patología , Factor A de Crecimiento Endotelial Vascular/genética , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/prevención & control
16.
Aging Cell ; 18(4): e12969, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31087498

RESUMEN

Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging-related vascular diseases. Here, we take advantage of single-cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging-induced loss of peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery-induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.


Asunto(s)
Tejido Adiposo Pardo/citología , Envejecimiento/fisiología , Células Madre Mesenquimatosas/metabolismo , Remodelación Vascular/fisiología , Adipogénesis/genética , Adulto , Anciano , Animales , Puente de Arteria Coronaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Persona de Mediana Edad , Neointima/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
17.
Exp Physiol ; 104(6): 946-956, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30924217

RESUMEN

NEW FINDINGS: What is the central question of this study? Is the membrane raft redox signalling pathway involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an angiotensin II-induced hypertensive animal model? What is the main finding and its importance? The membrane raft redox signalling pathway was involved in endothelial dysfunction and medial remodelling in angiotensin II-induced hypertension. ABSTRACT: The membrane raft (MR) redox pathway is characterized by NADPH oxidase activation via the clustering of its subunits through lysosome fusion and the activation of acid sphingomyelinase (ASMase). Our previous study shows that the MR redox signalling pathway is associated with angiontensin II (AngII)-induced production of reactive oxygen species (ROS) and endothelial dysfunction in rat mesenteric arteries. In the present study, we hypothesized that this signalling pathway is involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an AngII-induced hypertensive animal model. Sixteen-week-old male Sprague-Dawley rats were subjected to AngII infusion for 2 weeks with or without treatment with the lysosome fusion inhibitor bafilomycin A1 and ASMase inhibitor amitriptyline. After treatments, aortas were harvested for further study. The results showed that the MR redox signalling pathway was activated as indicated by the increase of MR formation, ASMase activity and ROS production in aorta from AngII-infused rats compared with that from control rats. MR formation and ROS production were significantly inhibited in thoracic aorta from AngII-induced rats treated with bafilomycin A1 and amitriptyline. Both treatments significantly attenuated blood pressure increase, endothelial dysfunction and vascular remodelling including medial hypertrophy, and increased collagen and fibronectin deposition in thoracic aortas from AngII-infused rats. Finally, both treatments significantly prevented the increase of inflammatory factors including monocyte chemotactic protein 1, intercellular adhesion molecule 1 and tumour necrosis factor α in thoracic aorta from AngII-infused rats. In conclusion, the present study demonstrates that the MR redox signalling pathway was involved in endothelial dysfunction and medial remodelling in AngII-induced hypertension.


Asunto(s)
Aorta Torácica/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Microdominios de Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular/fisiología , Angiotensina II , Animales , Presión Sanguínea/fisiología , Hipertensión/inducido químicamente , Masculino , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
18.
FASEB J ; 33(5): 6254-6268, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30776250

RESUMEN

Krüppel-like factor (KLF) 15 has emerged as a critical regulator of fibrosis in cardiovascular diseases. However, the precise role that KLF15 and its functional domain played in adventitial inflammation and fibrosis remains unclear. This study aims to investigate the role of the transactivation domain (TAD) of KLF15 in angiotensin II (Ang II)-induced adventitial pathologic changes. KLF15 expression was decreased in the vascular adventitia of Ang II-infused mice (1000 ng/kg/min, 14 d) and in adventitial fibroblasts (AFs) stimulated by Ang II (10-7 M). Adenovirus-mediated KLF15 overexpression normalized Ang II-induced vascular hypertrophy, increased collagen deposition, macrophage infiltration, and CCL2 and VCAM-1 expression. Interestingly, KLF15-ΔTAD (KLF15 with deletion of TAD at amino acids 132-152) overexpression showed no effect on the above pathologic changes. Similarly, perivascularly overexpression of KLF15 but not KLF15-ΔTAD in carotid arteries also attenuated Ang II-induced vascular inflammation and fibrosis. Furthermore, KLF15 overexpression after Ang II infusion rescued Ang II-induced vascular remodeling. CCL2 or VCAM-1-mediated monocyte and macrophage migration or adhesion to AFs in response to Ang II was negatively regulated by KLF15 through TAD. Ang II-enhanced Smad2/3 activation and adventitial migration, proliferation, and differentiation of AFs were suppressed by KLF15 but not KLF15-ΔTAD overexpression. Conversely, small interfering RNA knockdown of KLF15 aggravated Ang II-induced Smad2/3 activation and dysfunction of AFs. Luciferase, coimmunoprecipitation, and chromatin immunoprecipitation assay were used to demonstrate that interaction of KLF15 with Smad2/3 suppressed CCL2 expression through TAD. Mechanistically, activation of Ang II type 1 receptor/phospholipase Cγ 1/ERK1/2 signaling resulted in a decrease of KLF15 expression. In conclusion, these results demonstrate that KLF15 negatively regulates activation of AFs through TAD, which plays an important role in Ang II-induced adventitial inflammation and fibrosis.-Lu, Y.-Y., Li, X.-D., Zhou, H.-D., Shao, S., He, S., Hong, M.-N., Liu, J.-C., Xu, Y.-L., Wu, Y.-J., Zhu, D.-L., Wang, J.-G., Gao, P.-J. Transactivation domain of Krüppel-like factor 15 negatively regulates angiotensin II-induced adventitial inflammation and fibrosis.


Asunto(s)
Adventicia/metabolismo , Angiotensina II/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Adventicia/patología , Animales , Movimiento Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Sistema de Señalización de MAP Quinasas , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Monocitos/fisiología , Dominios Proteicos , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Proteínas Smad/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
19.
Front Physiol ; 9: 1581, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524295

RESUMEN

It has been demonstrated that serum/glucocorticoid regulated kinase 1 (SGK1) and the downstream transcription factor forkhead box O1 (FoxO1) plays a critical role in the differentiation of T helper 17 cells/regulatory T cells (Th17/Treg). In the present study, we hypothesized that this SGK1-FoxO1 signaling pathway is involved in Th17/Treg imbalance and target organ damage in angiotensin II (AngII)-induced hypertensive mice. Results show that SGK1 inhibitor EMD638683 significantly reversed renal dysfunction and cardiac dysfunction in echocardiography as indicated by decreased blood urine nitrogen and serum creatinine in AngII-infused mice. Flow cytometric assay shows that there was significant Th17/Treg imbalance in spleen and in renal/cardiac infiltrating lymphocytes as indicated by the increased Th17 cells (CD4+-IL17A+ cells) and decreased Treg cells (CD4+-Foxp3+). Consistently, real-time PCR shows that Th17-related cytokines including IL-17A, IL-23, and tumor necrosis factor α (TNF-α) was increased and Treg-related cytokine IL-10 was decreased in renal and cardiac infiltrating lymphocytes in AngII-infused mice. Meanwhile, SGK1 protein level, as well as its phosphorylation and activity, was significantly increased in spleen in AngII-infused rats. Furthermore, it was found that splenic phosphorylated FoxO1 was significantly increased, whereas total FoxO1 in nuclear preparation was significantly decreased in AngII-infused mice, suggesting that increased FoxO1 phosphorylation initiate its translocation from cytoplasm to nucleus. Notably, all changes were significantly inhibited by the treatment of EMD638683. These results suggest that SGK1 was involved in Th17/Treg imbalance and target organ damage in AngII-induced hypertension.

20.
Cell Metab ; 28(3): 476-489.e5, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30017353

RESUMEN

Adipocytes play important roles in regulating cardiovascular health and disease. However, the molecular mechanism underlying the endocrine role of brown adipose tissue (BAT) in pathological cardiac remodeling remains unknown. Herein we show that adenosine A2A receptor (A2AR) knockout (A2ARKO) causes interscapular BAT (iBAT) dysfunction, leading to accelerated cardiac remodeling in hypertension compared with wild-type (WT) mice. Surgical iBAT depletion induces dramatic cardiac remodeling in WT but not in A2ARKO hypertensive mice. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) in brown adipocytes is required for A2AR-mediated inhibition of hypertensive cardiac remodeling. Recombinant FGF21 administration improves cardiac remodeling in iBAT-depleted hypertensive mice. More importantly, brown adipocyte-specific A2ARKO inhibits FGF21 production and accelerates cardiac damage in hypertension. Consistently, brown adipocyte-specific FGF21 knockout abolishes the effects of A2AR agonism in attenuating hypertensive cardiac remodeling. Our findings reveal a distinctive endocrine role of BAT in hypertensive cardiac remodeling via activating A2AR/FGF21 pathway.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Hipertensión/patología , Receptor de Adenosina A2A/fisiología , Remodelación Ventricular , Adipocitos Marrones/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Línea Celular , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/farmacología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Hipertensión/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Receptor de Adenosina A2A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA