Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Med Food ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052664

RESUMEN

Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.

2.
Eur J Med Chem ; 276: 116687, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047606

RESUMEN

Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Estructura Molecular
3.
Cell Rep ; 43(2): 113689, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38241149

RESUMEN

As a primary target of severe acute respiratory syndrome coronavirus 2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of coronavirus disease 2019 (COVID-19)-related pulmonary injury. Here, we generate a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins are quantified across 71 post-mortem specimens. We identify a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels compared with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data reveal the region-specific enrichment of functional markers in bronchiole mucus plugs, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detect increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a distinct perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.


Asunto(s)
COVID-19 , Lesión Pulmonar , Humanos , Proteómica , SARS-CoV-2 , Células Epiteliales Alveolares
4.
J Nutr Biochem ; 122: 109453, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788723

RESUMEN

Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.


Asunto(s)
Densidad Ósea , Deficiencia de Riboflavina , Ratas , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteocalcina/metabolismo , Transducción de Señal , Deficiencia de Riboflavina/metabolismo , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Osteoblastos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Riboflavina/farmacología , Riboflavina/metabolismo , Diferenciación Celular
5.
Mol Cell Proteomics ; 22(11): 100662, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820924

RESUMEN

Carcinoembryonic antigen (CEA) of human plasma is a biomarker of many cancer diseases, and its N-glycosylation accounts for 60% of molecular mass. It is highly desirable to characterize its glycoforms for providing additional dimension of features to increase its performance in prognosis and diagnosis of cancers. However, to systematically characterize its site-specific glycosylation is challenging because of its low abundance. Here, we developed a highly sensitive strategy for in-depth glycosylation profiling of plasma CEA through chemical proteomics combined with multienzymatic digestion. A trifunctional probe was utilized to generate covalent bond of plasma CEA and its antibody upon UV irradiation. As low as 1 ng/ml CEA in plasma could be captured and digested with trypsin and chymotrypsin for intact glycopeptide characterization. Twenty six of 28 potential N-glycosylation sites were well identified, which were the most comprehensive N-glycosylation site characterization of CEA on intact glycopeptide level as far as we known. Importantly, this strategy was applied to the glycosylation analysis of plasma CEA in cancer patients. Differential site-specific glycoforms of plasma CEA were observed in patients with colorectal cancers (CRCs) and lung cancer. The distributions of site-specific glycoforms were different as the progression of CRC, and most site-specific glycoforms were overexpressed in stage II of CRC. Overall, we established a highly sensitive chemical proteomic method to profile site-specific glycosylation of plasma CEA, which should generally applicable to other well-established cancer glycoprotein biomarkers for improving their cancer diagnosis and monitoring performance.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Pulmonares , Humanos , Glicosilación , Antígeno Carcinoembrionario/metabolismo , Proteómica/métodos , Biomarcadores de Tumor , Glicopéptidos/análisis
6.
Nat Commun ; 14(1): 4138, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438365

RESUMEN

Indirect cell-cell interactions mediated by secreted proteins and their plasma membrane receptors play essential roles for regulating intercellular signaling. However, systematic profiling of the interactions between living cell surface receptors and secretome from neighboring cells remains challenging. Here we develop a chemical proteomics approach, termed interaction-guided crosslinking (IGC), to identify ligand-receptor interactions in situ. By introducing glycan-based ligation and click chemistry, the IGC approach via glycan-to-glycan crosslinking successfully captures receptors from as few as 0.1 million living cells using only 10 ng of secreted ligand. The unparalleled sensitivity and selectivity allow systematic crosslinking and identification of ligand-receptor complexes formed between cell secretome and surfaceome in an unbiased and all-to-all manner, leading to the discovery of a ligand-receptor interaction between pancreatic cancer cell-secreted urokinase (PLAU) and neuropilin 1 (NRP1) on pancreatic cancer-associated fibroblasts. This approach is thus useful for systematic exploring new ligand-receptor pairs and discovering critical intercellular signaling events.


Asunto(s)
Proteómica , Transducción de Señal , Ligandos , Comunicación Celular , Transporte Biológico
7.
Mol Cell Proteomics ; 22(7): 100575, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209817

RESUMEN

Pancreatic cancer, in most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for patients with PDAC, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. A global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement in proteomics technologies has enabled the profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteómica , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinogénesis , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Anal Chem ; 95(20): 7897-7905, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37164942

RESUMEN

Data-dependent liquid chromatography-tandem mass spectrometry (LC-MS/MS) is widely used in proteomic analyses. A well-performed LC-MS/MS workflow, which involves multiple procedures and interdependent metrics, is a prerequisite for deep proteome profiling. Researchers have previously evaluated LC-MS/MS performance mainly based on the number of identified peptides and proteins. However, this is not a comprehensive approach. This motivates us to develop MSRefine, which aims to evaluate and optimize the performance of the LC-MS/MS workflow for data-dependent acquisition (DDA) proteomics. It extracts 47 kinds of metrics, scores the metrics, and reports visual results, assisting users in evaluating the workflow, locating problems, and providing optimizing strategies. In this study, we compared and analyzed multiple pairs of datasets spanning different samples, methods, and instruments and demonstrated that the comprehensive visual metrics and scores in MSRefine enable us to evaluate the performance of the various experiments and provide optimal strategies for the identification of more peptides and proteins.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Proteómica/métodos , Péptidos/química
9.
BMC Med ; 20(1): 470, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482371

RESUMEN

BACKGROUND: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS: We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS: These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína Quinasa C-delta , Humanos , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteómica , Microambiente Tumoral , Proteína Quinasa C-delta/genética
10.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 300-303, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-36414550

RESUMEN

Objective: To investigate the effects of a self-designed nutritional preparation on hypothalamic-pituitary-ovarian (HPO) axis function and energy metabolism in female SD rats exposed to intermittent cold. Methods: Female SD rats were divided into control group, cold exposure group and nutritional preparation group. The control group and cold exposure group were given distilled water by daily gavage, and the nutritional preparation group was given nutritional preparation intragastrically. After the treatment, the cold exposure group and nutritional preparation group were exposed to -10℃ in a cabin for 4 h every day. After being treated for 14 days, the serum, uterus and ovary of rats were collected. The serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and other hormone indicators were detected by enzyme-linked immunosorbent assay (ELISA) and colorimetry was used to detect ATPase and other energy metabolism related indicators. Results: Compared with the control group, cold exposure significantly up-regulated the protein expressions of FSHR and LHR, and notably enhanced the activity of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in ovary and uterus (P<0.05). Nutritional preparation down-regulated the protein expressions of FSHR and LHR, and inhibited the activity of ATPase in ovary and uterus (P<0.05) compared with the cold exposure group. Conclusion: Nutritional preparations can effectively improve the expressions of HPO axis related receptors and abnormal energy metabolism in uterus and ovary caused by intermittent cold exposure.


Asunto(s)
Ovario , Útero , Animales , Femenino , Ratas , Adenosina Trifosfatasas/metabolismo , Metabolismo Energético , Ratas Sprague-Dawley , Útero/metabolismo , Frío
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 308-312, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-36414552

RESUMEN

Objective: To investigate the anti-fatigue effects of composition of Moringa oleifera leaves and Polygonatum polysaccharide, and to explore the mechanisms. Methods: Thirty male Kunming mice were randomly divided into control (C) and composition of Moringa oleifera leaves and Polygonatum polysaccharide group (MP). There were 15 mice in each group. Group C was given distilled water and the group MP was given composition intragastriclly every day. The volume was 0.5 ml. After 14 days of treatment, weight-bearing swimming experiment was conducted, and exhaustive swimming time was recorded. The bearing weight was 3% of the body weight. In another experiment, 48 male Kunming mice were randomly divided into quiet control group (QC), swimming control group (SC) and composition group (MP). There were 16 mice in each group. The QC and SC groups were given distilled water intragastrically, and the group MP was treated with composition every day for 14 days. The volume was 0.5 ml. On the day 15, 30 minutes after intragastriclly administration of distilled water, blood, liver and hind leg muscle of the QC group were collected immediately. The SC and MP groups were subjected non-weight-bearing swimming experiment, and blood, liver and hind leg muscle were collected after swimming. The fatigue related indexes, oxidant/antioxidant parameters and energy metabolism indicators in serum and tissues were determined by commercial kits. Results: The exhaustive swimming time of mice in MP group was significantly longer than that in the C group (P<0.05). Compared with the control group, non-weight-bearing swimming decreased the contents of serum glucose and GSH, the contents of hepatic glycogen and ATP, the hepatic activities of SOD, LDH and ATPase, and muscle activity of GSH-Px (P< 0.05). However, serum levels of BUN and MDA were increased (P<0.05). Compared with the SC group, the composition remarkably increased the contents of serum glucose and hepatic glycogen, increased serum content of GSH, enhanced hepatic activities of SOD, LDH and ATPase and muscle activity of GSH-Px, and increased the hepatic content of ATP (P<0.05). However, the serum level of BUN was decreased (P<0.05). Conclusion: The Moringa oleifera leaves and Polygonatum polysaccharide composition possesses anti-fatigue effects. Anti-oxidant and improving energy metabolism could be the important mechanisms.


Asunto(s)
Moringa oleifera , Polygonatum , Masculino , Ratones , Animales , Moringa oleifera/metabolismo , Polygonatum/metabolismo , Glucógeno Hepático , Polisacáridos/farmacología , Antioxidantes , Superóxido Dismutasa/metabolismo , Adenosina Trifosfatasas , Glucosa , Agua , Adenosina Trifosfato
12.
Front Microbiol ; 13: 983358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090094

RESUMEN

Quercetin has a wide range of biological properties that can be used to prevent or decrease particular inflammatory diseases. In this study, we aimed to investigate the gene expression profile and metabolic pathway of the gut microbiota of an antibiotic-treated mouse model administered quercetin. Blood, feces, and intestinal tissue samples were collected and metagenomic sequencing, enzyme-linked immunosorbent assay, and western blot analysis were used to detect variations. The results showed that the quercetin-treated group exhibited increased levels of health beneficial bacterial species, including Faecalibaculum rodentium (103.13%), Enterorhabdus caecimuris (4.13%), Eggerthella lenta (4%), Roseburia hominis (1.33%), and Enterorhabdus mucosicola (1.79%), compared with the model group. These bacterial species were positively related to butyrate, propionate, and intestinal tight junction proteins (zonula occludens-1 and occludin) expression, but negatively related to serum lipopolysaccharide and tumor necrosis factor-α level. In addition, the metabolic pathway analysis showed that dietary quercetin significantly enhanced spliceosomes (111.11%), tight junctions (62.96%), the citrate cycle (10.41%), pyruvate metabolism (6.95%), and lysine biosynthesis (5.06%), but decreasing fatty acid biosynthesis (23.91%) and N-glycan (7.37%) biosynthesis. Furthermore, these metabolic pathway changes were related to relative changes in the abundance of 10 Kyoto Encyclopedia of Genes and Genomes genes (K00244, K00341, K02946, K03737, K01885, k10352, k11717, k10532, K02078, K01191). In conclusion, dietary quercetin increased butyrate-producing bacterial species, and the acetyl-CoA-mediated increased butyrate accelerated carbohydrate, energy metabolism, reduced cell motility and endotoxemia, and increased the gut barrier function, thereby leading to healthy colonic conditions for the host.

13.
Anal Chim Acta ; 1201: 339615, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35300801

RESUMEN

Insufficient chromatographic performance results in reduced utilization of MS/MS scan capacity of advanced MS instruments. Improvement in peptide separation in liquid chromatography is critical for increasing the sensitivity and quantification performance of LC-MS-based proteomics. However, existing column fabrication methods suffer from slow packing, large dead volume, and band broadening. Herein, we reported that directly pulling emitter tips within short frits after fast packing (termed "filled tip") can minimize the dead volume, improving ionization efficiency and reducing band broadening. Within 10 min, our method can pack over 10 cm for 50 µm I.D. capillary columns under 6-8 MPa and over 50 cm for 75 µm I.D. long capillary columns under 70 MPa. We can identify an average of 3043 protein groups and 33 309 peptide-spectrum matches (PSMs) from 1 ng of HeLa digest using a 50 µm I.D. x 20 cm "filled tip" column, with good reproducibility. The number of protein groups increased by 50% and 96% when compared with a 50 µm I.D. "void tip" column and a 100 µm I.D. column with a manually pulled tip, respectively. We identified an average of 5534 protein groups and 71 769 PSMs from 10 ng of HeLa digest. In addition, using 75 µm I.D. x 50 cm "filled tip" columns, we can identify on average 8829 protein groups and 170 751 PSMs in single-shot data-dependent acquisition analysis from 500 ng of 293T digested peptides. Importantly, good repeatability and reproducibility of "filled tip" method were verified by results from columns fabricated in three batches and by different persons. When compared with conventional columns with "void tips", "filled tip" columns reduced median full peak widths by 19% and alleviated sampling redundancy by 10%. Collectively, we developed an easy-to-use, versatile and robust column fabrication method for both narrow-bore and long capillary columns, which achieved great sensitivity and depth in proteomic analysis.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Péptidos , Reproducibilidad de los Resultados
14.
Aging (Albany NY) ; 14(6): 2574-2589, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305084

RESUMEN

Intracerebral hemorrhage (ICH) is a devastating event with high disability and fatality rates. However, there is a lack of effective treatments for this condition. We aimed to investigate the neuroprotective and axonal regenerative effects of progesterone after ICH. For this purpose, an ICH model was established in adult mice by injecting type VII collagenase into the striatum; the mice were then treated with progesterone (8 mg/kg). Hematoma absorption, neurological scores, and brain water content were evaluated on days one, three, and seven after the ICH. The effect of progesterone on inflammation and axonal regeneration was examined on day three after the ICH using western blotting, immunohistochemistry, immunofluorescence, as well as hematoxylin-eosin, Nissl, and Luxol fast blue staining. In addition, we combined progesterone with the phosphoinositide 3-kinase/serine/threonine-specific protein kinase (PI3K/AKT) inhibitor, LY294002, to explore its potential neuroprotective mechanisms. Administration of progesterone attenuated the neurological deficits and expression of inflammatory cytokines and promoted axonal regeneration after ICH, this effect was blocked by LY294002. Collectively, these results suggest that progesterone could reduce axonal damage and produced partial neuroprotective effects after ICH through the PI3K/AKT/mTOR pathway, providing a new therapeutic target and basis for the treatment of ICH.


Asunto(s)
Fármacos Neuroprotectores , Fosfatidilinositol 3-Quinasas , Animales , Axones/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Modelos Animales de Enfermedad , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Progesterona/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
J Oncol ; 2022: 6189833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251174

RESUMEN

OBJECTIVE: To investigate the clinical efficacy and safety of bevacizumab, apatinib, and recombinant human endothelial inhibitor in the treatment of advanced gastric cancer. METHODS: The medical data of 204 patients with a medium to advanced gastric cancer assessed for eligibility treated in our hospital from February 2019 to April 2020 were retrospectively analyzed. The eligible patients were assigned at a ratio of 1 : 1:1 : 1 to either the control group (chemotherapy), study group I (bevacizumab combined with chemotherapy), study group II (apatinib combined with chemotherapy), or study group III (recombinant human endothelial inhibitor combined with chemotherapy) according to different treatment methods. The treatment efficacy, drug toxicity, quality of life, and serum tumor marker levels before and after treatment were compared among the four groups. RESULTS: Regarding the treatment effects, the effective rate of study group II (68.63%) was significantly higher than that of the control group (33.33%), study group I (58.82%), and study group III (49.02%) (P < 0.05). The four groups showed similar safety and tolerability profiles (P > 0.05). The treatment in study group II led to a significantly higher physiological function score vs. the other three groups, but the scores of other items were not significantly different. Significant reduction was observed in the serum tumor markers after treatment in the four groups (P < 0.05), but treatment in study group II led to a significantly greater reduction than the other three groups (P < 0.05). CONCLUSION: The addition of apatinib, bevacizumab, and recombinant human endothelial inhibitor injection to chemotherapy for the treatment of medium to advanced gastric cancer can significantly improve the clinical treatment efficacy, among which the use of apatinib combined with chemotherapy achieves the best results, which is worthy of clinical promotion.

17.
Pak J Pharm Sci ; 34(5(Special)): 2041-2045, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34862871

RESUMEN

To explore the clinical effects of targeted drug therapy on elderly patients with gastric cancer. Totally 200 metastatic gastric cancer patients who came to our hospital from January 2017 to January 2020 were selected and randomized into four groups, with 50 patients in each group. Bevacizumab (Group I), apatinib (Group II), and recombinant human endostatin (Group III) adopted respectively. While the control group received no targeted drug. Clinical data and clinical effect was collected and compared. After the therapy, the vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor-2 (sVEGFR2) and human epithelial growth factor receptor-2 (HER2) positive detection of Group I, Group II, and Group III were better than the control group (P<0.05). In addition, the therapeutic effects of Group I, Group II, and Group III were higher and the incidence of adverse reactions was lower than the control group (P<0.05). Targeted drugs have obvious clinical effects in gastric cancer. It can effectively inhibit tumor growth and reduce the occurrence of complications, which is worthy of extensive clinical application and promotion.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/uso terapéutico , Endostatinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Factores de Edad , Anciano , Inhibidores de la Angiogénesis/efectos adversos , Bevacizumab/efectos adversos , Endostatinas/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/efectos adversos , Piridinas/efectos adversos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factores de Tiempo , Resultado del Tratamiento
18.
Front Oncol ; 11: 661288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532282

RESUMEN

BACKGROUND: The previous investigations have identified that long non-coding RNA (lncRNAs) act as crucial regulators in gastric carcinoma. However, the function of lncRNA MIR4435-2HG in the modulation of gastric carcinoma remains elusive. Here, we aimed to explore the role of MIR4435-2HG in gastric carcinoma. METHOD: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were applied to select the differently expressed lncRNAs in gastric carcinoma. The qRT-PCR was applied to analyze MIR4435-2HG expression in carcinoma tissues and cell lines. The effect of MIR4435-2HG on proliferation, invasion, migration, and apoptosis of gastric carcinoma cells was detected by Cell Counting Kit-8 (CCK-8) assays, transwell assays, and flow cytometry in vitro. A subcutaneous tumor model was constructed to examine the tumor growth of gastric carcinoma cells after knocking out MIR4435-2HG. RNA immunoprecipitation and luciferase reporting assays were applied to evaluate the interaction of MIR4435-2HG, miR-138-5p, and Sox4. RESULTS: The bioinformatics analysis based on TCGA and GEO databases indicated that MIR4435-2HG was obviously elevated in gastric carcinoma samples. The qRT-PCR analysis revealed that MIR4435-2HG was upregulated in clinical gastric carcinoma tissues and cells. The high expression of MIR4435-2HG is associated with the poor survival rate of patients. The knockout of MIR4435-2HG could repress the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) and accelerate the apoptosis of gastric carcinoma cells. Moreover, the deletion of MIR4435-2HG was able to attenuate the tumor growth in vivo. Mechanically, we identified that MIR4435-2HG enhanced Sox4 expression by directly interacting with miR-138-5p as a competitive endogenous RNA (ceRNA) in gastric carcinoma cells, in which Sox4 was targeted by miR-138-5p. CONCLUSION: MIR4435-2HG is elevated in gastric carcinoma cells and contributes to the growth, metastasis, and EMT of gastric carcinoma cells by targeting miR-138-5p/Sox4 axis. MIR4435-2HG may be applied as a potential therapeutic target in gastric carcinoma.

19.
In Vitro Cell Dev Biol Anim ; 57(7): 715-725, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34448115

RESUMEN

Colon cancer has been recognized as the major reason for global cancer-associated mortality. microRNA (miRNA, miR)-4429-5p has been documented to act as a tumor-suppressive miRNA in some cancers, but its effect on colon cancer remains elusive. In this study, the biological effects of miR-4429-5p were investigated both in vitro by MTT, 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays and in vivo by a xenograft mice model. Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and dual-luciferase assay were used to identify the binding of miR-4429-5p on matrix metalloproteinase 16 (MMP16) 3'-UTR. Our results suggested that overexpression of miR-4429-5p hindered colon cancer cell proliferation, migration, and invasion, whereas knockdown of miR-4429-5p exhibited the opposite effect in colon cancer cells. Mechanistically, miR-4429-5p directly bound to the 3'-UTR of MMP16 and led to inhibition of MMP16 protein. Overexpression of miR-4429-5p inhibited colon tumor growth by targeting MMP16. Taken together, our study revealed that miR-4429-5p prevented colon cancer progression through targeting MMP16, indicating miR-4429-5p as a promising target for treatment improvement for colon cancer.


Asunto(s)
Neoplasias del Colon/patología , Metaloproteinasa 16 de la Matriz/genética , MicroARNs/genética , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metaloproteinasa 16 de la Matriz/metabolismo , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Am J Transl Res ; 13(5): 4704-4711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150050

RESUMEN

OBJECTIVE: To investigate the safety, efficacy, and prognosis of advanced gastric cancer patients treated with molecular targeted drug therapy. METHODS: A total of 200 patients with metastatic gastric cancer admitted to our hospital from March 2018 to December 2018 were randomly selected and divided into the control group, group A, group B and group C, with 50 patients in each group. Patients in the control group received surgical treatment combined with conventional chemotherapy. Patients in group A were provided with surgical treatment combined with bevacizumab, patients in group B received surgical treatment combined with apatinib, and patients in group C received surgical treatment combined with recombinant human endostatin (RHE). Clinical efficacy, vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR-2) levels, Response Evaluation Criteria in Solid Tumors (RECIST), sentinel lymph node (SLD) metastasis, and adverse reactions were compared among different groups of patients with metastatic gastric cancer. RESULTS: There were no significant differences in treatment efficiency, VEGF and VEGFR-2 levels, RECIST, SLD metastasis value and adverse reactions among group A, group B and group C, and the results were not statistically significant (P>0.05). The levels of VEGF, VEGFR-2, SLD metastasis, and adverse reactions in group A, B, and C were significantly lower than those in the control group (P<0.05). The effective rate of treatment and RECIST in group A, B and C were significantly higher than those in the control group, and the comparison results were statistically significant (P<0.05). CONCLUSION: Molecular targeted drug therapy is effective and safe in patients with advanced gastric cancer, and the prognosis of patients is satisfactory, without the proliferation and metastasis of cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA