Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
BMC Immunol ; 25(1): 59, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251909

RESUMEN

OBJECTIVE AND METHODS: To ascertain the connection between cuproptosis-related genes (CRGs) and the prognosis of hepatocellular carcinoma (HCC) via single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data, relevant data were downloaded from the GEO and TCGA databases. The differentially expressed CRGs (DE-CRGs) were filtered by the overlaps in differentially expressed genes (DEGs) between HCC patients and normal controls (NCs) in the scRNA-seq database, DE-CRGs between high- and low-CRG-activity cells, and DEGs between HCC patients and NCs in the TCGA database. RESULTS: Thirty-three DE-CRGs in HCC were identified. A prognostic model (PM) was created employing six survival-related genes (SRGs) (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) via univariate Cox regression analysis and LASSO. The predictive ability of the model was validated via a nomogram and receiver operating characteristic curves. Research has employed tumor immune dysfunction and exclusion as a means to examine the influence of PM on immunological heterogeneity. Macrophage M0 levels were significantly different between the high-risk group (HRG) and the low-risk group (LRG), and a greater macrophage level was linked to a more unfavorable prognosis. The drug sensitivity data indicated a substantial difference in the half-maximal drug-suppressive concentrations of idarubicin and rapamycin between the HRG and the LRG. The model was verified by employing public datasets and our cohort at both the protein and mRNA levels. CONCLUSION: A PM using 6 SRGs (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) was developed via bioinformatics research. This model might provide a fresh perspective for assessing and managing HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Análisis de la Célula Individual , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Pronóstico , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Nomogramas
2.
Front Oncol ; 14: 1393902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099690

RESUMEN

Objective: The purpose of this study is to conduct a systematic review to assess the effects of different forms of resistance exercises (resistance exercise, resistance exercise combined with aerobic exercise, and resistance exercise combined with other exercises) on physical fitness, quality of life (QOL), and fatigue of patients with cancer. Methods: We conducted a systematic review using the Cochrane Handbook for Systematic Reviews of Interventions guidelines. We searched PubMed, Web of Science, and Scopus databases for the studies from the establishment of the database to September 2023, including randomized controlled trials and clinical trials that evaluated the effects of different resistance exercise on physical fitness, QOL, and fatigue in all patients with cancer. Two reviewers independently assessed the quality of all the included studies using the Cochrane Handbook for Systematic Reviews of Interventions and MINORS scale. We divided the intervention into three types: resistance exercise, resistance exercise combined with aerobic exercise, and resistance exercise combined with other exercises. Results: In total, 48 studies (3,843 participants) met the inclusion criteria. The three exercise intervention forms have significant effects on physical fitness and QOL, but the improvement effect on fatigue is not clear. A total of 34 studies reported significant and beneficial effects of resistance exercise on physical fitness across all types of cancer. There were 28 studies that reported significant or borderline improvement effects of resistance on QOL, and only 10 studies reported significant effects of resistance exercise interventions on fatigue improvement in patients with cancer. Conclusions: Resistance exercise, resistance exercise combined with aerobic exercise, and resistance exercise combined with other exercises all have a positive effect on improving fitness and QOL in patients with cancer. Resistance exercise has an advantage in improving muscle strength, while combined resistance exercise has an advantage in improving QOL; however, there are no consistent findings in improving fatigue, although low-intensity resistance exercise is effective. Systematic review registration: www.inplasy.com, identifier INPLASY2023110034.

3.
Biomed Pharmacother ; 176: 116876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850657

RESUMEN

Necrotizing enterocolitis (NEC) is one of the most common and serious intestinal illnesses in newborns and seriously affects their long-term prognosis and survival. Butyrate is a short-chain fatty acid that can relieve intestinal inflammation, but its mechanism of action is unclear. Results from an in vivo neonatal rat model has shown that butyrate caused an improved recovery from NEC. These protective effects were associated with the metabolite of hesperetin, as determined by metabolomics and molecular biological analysis. Furthermore, transcriptomics combined with inhibitor assays were used to investigate the mechanism of action of hesperetin in an in vitro NEC model (IEC-6 cells exposed to LPS) to further investigate the mechanism by which butyrate attenuates NEC. The transcriptomics analysis showed that the PI3K-Akt signaling pathway was involved in the anti-NEC effect of hesperitin. Subsequently, the results using an inhibitor of PI3K (LY294002) indicated that the suppression could be explained by the hesperetin-induced expression of tight junction (TJ) proteins by potentially blocking the PI3K-Akt signaling pathway. In summary, the present study demonstrated that butyrate could improve recovery from NEC with a hesperetin metabolite, causing potential inhibition of the phosphorylation of the PI3K-Akt signaling pathway, resulting in the increased expression of TJ proteins. These findings reveal a potential new therapeutic pathway for the treatment of NEC.


Asunto(s)
Enterocolitis Necrotizante , Hesperidina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Hesperidina/farmacología , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Animales Recién Nacidos , Modelos Animales de Enfermedad , Butiratos/farmacología , Línea Celular
4.
Phytomedicine ; 130: 155785, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823342

RESUMEN

BACKGROUND: Oxidative stress is the main cause of many diseases, but because of its complex pathogenic factors, there is no clear method for treating it. Ginseng total saponin (GTS) an important active ingredients in Panax ginseng C.A. Mey (PG) and has potential therapeutic ability for oxidative stress due to various causes. However, the molecular mechanism of GTS in the treating oxidative stress damage in red blood cells (RBCs) is still unclear. PURPOSE: This study aimed to examine the protective effect of GTS on RBCs under oxidative stress damage and to determine its potential mechanism. METHODS: The oxidative stress models of rat RBCs induced by hydrogen peroxide (H2O2) and exhaustive swimming in vivo and in vitro was used. We determined the cell morphology, oxygen carrying capacity, apoptosis, antioxidant capacity, and energy metabolism of RBCs. The effect of tyrosine phosphorylation (pTyr) of Band 3 protein on RBCs glycolysis was also examined. RESULTS: GTS reduced the hemolysis of RBCs induced by H2O2 at the lowest concentration. Moreover, GTS effectively improved the morphology, enhanced the oxygen carrying capacity, and increased antioxidant enzyme activity, adenosine triphosphate (ATP) levels, and adenosine triphosphatase (ATPase) activity in RBCs. GTS also promoted the expression of membrane proteins in RBCs, inhibited pTyr of Band 3 protein, and further improved glycolysis, restoring the morphological structure and physiological function of RBCs. CONCLUSIONS: This study shows, that GTS can protect RBCs from oxidative stress damage by improving RBCs morphology and physiological function. Changes in pTyr expression and its related pTyr regulatory enzymes before and after GTS treatment suggest that Band 3 protein is the main target of GTS in the treating endogenous and exogenous oxidative stress. Moreover, GTS can enhance the glycolytic ability of RBCs by inhibiting pTyr of Band 3 protein, thereby restoring the function of RBCs.


Asunto(s)
Eritrocitos , Glucólisis , Peróxido de Hidrógeno , Estrés Oxidativo , Panax , Ratas Sprague-Dawley , Saponinas , Tirosina , Estrés Oxidativo/efectos de los fármacos , Panax/química , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Saponinas/farmacología , Animales , Glucólisis/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/farmacología , Tirosina/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Ratas , Hemólisis/efectos de los fármacos , Antioxidantes/farmacología , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Apoptosis/efectos de los fármacos
5.
Biomed Pharmacother ; 177: 116987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897159

RESUMEN

Erectile dysfunction is a complex and common complication of diabetes mellitus, which lacks an effective treatment. The repairing role of vascular endothelium is the current research hotspot of diabetic mellitus erectile dysfunction (DMED), and the activation of PI3K/AKT/eNOS pathway positively affects the repair of vascular endothelium. The herbal extract isorhamnetin has significant vasoprotective effects and has great potential in treating DMED. This study aimed to clarify whether isorhamnetin has an ameliorative effect on DMED and to investigate the modulation of the PI3K/AKT/eNOS signaling pathway by isorhamnetin to discover its potential mechanism of action. In vivo experiments were performed using a streptozotocin-induced diabetic rat model, and efficacy was assessed after 4 weeks of isorhamnetin gavage administration at 10 mg/kg or 20 mg/kg. Erectile function in rats was assessed by maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP), and changes in corpus cavernosum (CC) fibrosis, inflammation levels, oxidative stress levels, and apoptosis were assessed by molecular biology techniques. In vitro experiments using high glucose-induced corpus cavernosum endothelial cells were performed to further validate the anti-apoptotic effect of isorhamnetin and its regulation of the PI3K/AKT/eNOS pathway. The findings demonstrated that isorhamnetin enhanced erectile function, decreased collagen content, and increased smooth muscle content in the CC of diabetic rats. In addition, isorhamnetin decreased the serum levels of pro-inflammatory factors IL-6, TNF-α, and IL-1ß, increased the levels of anti-inflammatory factors IL-10 and IL-4, increased the activities of SOD, GPx, and CAT as well as the levels of NO, and decreased the levels of MDA in corpus cavernosum tissues. Isorhamnetin also increased the content of CD31 in CC tissues of diabetic rats, activated the PI3K/AKT/eNOS signaling pathway, and inhibited apoptosis. In conclusion, isorhamnetin exerts a protective effect on erectile function in diabetic rats by reducing the inflammatory response, attenuating the level of oxidative stress and CC fibrosis, improving the endothelial function and inhibiting apoptosis. The mechanism underlying these effects may be linked to the activation of the PI3K/AKT/eNOS pathway.


Asunto(s)
Disfunción Eréctil , Estrés Oxidativo , Quercetina , Transducción de Señal , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Erección Peniana/efectos de los fármacos , Pene/efectos de los fármacos , Pene/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Quercetina/análogos & derivados , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
Bioact Mater ; 39: 135-146, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38783928

RESUMEN

Iron is considered as an attractive alternative material for bioresorbable scaffolds (BRS). The sirolimus eluting iron bioresorbable scaffold (IBS), developed by Biotyx Medical (Shenzhen, China), is the only iron-based BRS with an ultrathin-wall design. The study aims to investigate the long-term efficacy, safety, biocompatibility, and lumen changes during the biodegradation process of the IBS in a porcine model. A total of 90 IBSs and 70 cobalt-chromium everolimus eluting stents (EES) were randomly implanted into nonatherosclerotic coronary artery of healthy mini swine. The multimodality assessments including coronary angiography, optical coherence tomography, micro-computed tomography, magnetic resonance imaging, real-time polymerase chain reaction (PCR), and histopathological evaluations, were performed at different time points. There was no statistical difference in area stenosis between IBS group and EES group at 6 months, 1year, 2 years and 5 years. Although the scaffolded vessels narrowed at 9 months, expansive remodeling with increased mean lumen area was found at 3 and 5 years. The IBS struts remained intact at 6 months, and the corrosion was detectable at 9 months. At 5 years, the iron struts were completely degraded and absorbed in situ, without in-scaffold restenosis or thrombosis, lumen collapse, aneurysm formation, and chronic inflammation. No local or systemic toxicity and abnormal histopathologic manifestation were found in all experiments. Results from real-time PCR indicated that no sign of iron overload was reported in scaffolded segments. Therefore, the IBS shows comparable efficacy, safety, and biocompatibility with EES, and late lumen enlargement is considered as a unique feature in the IBS-implanted vessels.

7.
Am J Hypertens ; 37(9): 682-691, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38782571

RESUMEN

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of the testis-specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral microinjection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the BP in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high BP in hypertensive rats, making it a potential therapeutic target for hypertension.


Asunto(s)
Presión Sanguínea , Hipertensión , Janus Quinasa 2 , Núcleo Hipotalámico Paraventricular , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Janus Quinasa 2/metabolismo , Norepinefrina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Fosforilación , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
J Ethnopharmacol ; 328: 118135, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556139

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Clinacanthus nutans (Burm. f.) Lindau, a traditional herb renowned for its anti-tumor, antioxidant, and anti-inflammatory properties, has garnered considerable attention. Although its hepatoprotective effects have been described, there is still limited knowledge of its treatment of acute liver injury (ALI), and its mechanisms remain unclear. AIM OF THE STUDY: To assess the efficacy of Clinacanthus nutans in ALI and to identify the most effective fractions and their underlying mechanism of action. METHODS: Bioinformatics was employed to explore the underlying anti-hepatic injury mechanisms and active compounds of Clinacanthus nutans. The binding ability of schaftoside, a potential active ingredient in Clinacanthus nutans, to the core target nuclear factor E2-related factor 2 (Nrf2) was further determined by molecular docking. The role of schaftoside in improving histological abnormalities in the liver was observed by H&E and Masson's staining in an ALI model induced by CCl4. Serum and liver biochemical parameters were measured using AST, ALT and hydroxyproline kits. An Fe2+ kit, transmission electron microscopy, western blotting, RT-qPCR, and DCFH-DA were used to measure whether schaftoside reduces ferroptosis-induced ALI. Subsequently, specific siRNA knockdown of Nrf2 in AML12 cells was performed to further elucidate the mechanism by which schaftoside attenuates ferroptosis-induced ALI. RESULTS: Bioinformatics analysis and molecular docking showed that schaftoside is the principal compound from Clinacanthus nutans. Schaftoside was shown to diminish oxidative stress levels, attenuate liver fibrosis, and forestall ferroptosis. Deeper investigations revealed that schaftoside amplified Nrf2 expression and triggered the Nrf2/GPX4 pathway, thereby reversing mitochondrial aberrations triggered by lipid peroxidation, GPX4 depletion, and ferroptosis. CONCLUSION: The lead compound schaftoside counters ferroptosis through the Nrf2/GPX4 axis, providing insights into a novel molecular mechanism for treating ALI, thereby presenting an innovative therapeutic strategy for ferroptosis-induced ALI.


Asunto(s)
Acanthaceae , Ferroptosis , Glicósidos , Factor 2 Relacionado con NF-E2 , Simulación del Acoplamiento Molecular , Hígado
9.
PeerJ ; 12: e17002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515461

RESUMEN

Background: The incidence of non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) has been increasing. However, the role of glycosylation, an important modification that alters cellular differentiation and immune regulation, in the progression of NAFLD to HCC is rare. Methods: We used the NAFLD-HCC single-cell dataset to identify variation in the expression of glycosylation patterns between different cells and used the HCC bulk dataset to establish a link between these variations and the prognosis of HCC patients. Then, machine learning algorithms were used to identify those glycosylation-related signatures with prognostic significance and to construct a model for predicting the prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice and clinical cohorts. Results: The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher NHGRM scores were associated with a poorer prognosis, stronger immune-related features, immune cell infiltration and immunity scores. Animal experiments, external and clinical cohorts confirmed the expression of these genes. Conclusion: The genetic signature we identified may serve as a potential indicator of survival in patients with NAFLD-HCC and provide new perspectives for elucidating the role of glycosylation-related signatures in this pathologic process.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Neoplasias Hepáticas/genética , Glicosilación , Proteínas Nucleares/metabolismo
10.
Chem Biodivers ; 21(4): e202301610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379194

RESUMEN

BACKGROUND: SHP2 is highly expressed in a variety of cancer and has emerged as a potential target for cancer therapeutic agents. The identification of uncharged pTyr mimics is an important direction for the development of SHP2 orthosteric inhibitors. METHODS: Surface plasmon resonance analysis and cellular thermal shift assay were employed to verify the direct binding of LXQ-217 to SHP2. The inhibitory effect of LXQ-217 was characterized by linear Weaver-Burke enzyme kinetic analysis and BIOVIA Discovery Studio. The inhibition of tumor cell proliferation by LXQ-217 was characterized by cell viability assay, colony formation assays and hoechst 33258 staining. The inhibition of lung cancer proliferation in vivo was studied in nude mice after oral administration of LXQ-217. RESULTS: An electroneutral bromophenol derivative, LXQ-217, was identified as a competitive SHP2 inhibitor. LXQ-217 induced apoptosis and inhibited growth of human pulmonary epithelial cells by affecting the RAS-ERK and PI3 K-AKT signaling pathways. Long-term oral administration of LXQ-217 significantly inhibited the proliferation ability of lung cancer cells in nude mice. Moreover, mice administered LXQ-217 orally at high doses exhibited no mortality or significant changes in vital signs. CONCLUSIONS: Our findings on the uncharged orthosteric inhibitor provide a foundation for further development of a safe and effective anti-lung cancer drug.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Cinética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Fenoles/síntesis química , Fenoles/química , Fenoles/farmacología
11.
Acta Biomater ; 176: 144-155, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244660

RESUMEN

Transarterial chemoembolization (TACE) is a common treatment for unresectable intermediate stage hepatocellular carcinoma (HCC) and involves the combination of chemotherapy agents and embolic materials to target and block the blood supply to the tumor, leading to localized treatment. However, the selection of clinical chemoembolization agents remains limited, and the effectiveness of various agents is still under investigation. Meanwhile, replicating the complex vasculature and extracellular matrix (ECM) circumstances of HCC in in vitro models for evaluating embolic agents proves to be challenging. Herein, we developed a decellularized cancerous liver model with translucent appearance, a complicated hepatic vascular system and tissue-specific ECM for the evaluation of embolic agents. Inkpad oil and microparticles were used to illustrate different systems of vascular structures between healthy and HCC rats' livers. Quantitative analysis with AngioTool revealed significant differences in vessel density and lacunarity between the two groups. Proteomics showed higher secretion of collagens in the HCC rat liver models than in healthy livers. Utilizing this in vitro model, we investigated the impact of tumor-specific vascular structure and ECM composition on chemoembolization performance, the two key factors inaccessible by currently available drug release testing platforms. Our findings revealed that the presence of an aberrant vascular system and the distorted ECM within the model led to drug retention. This preclinical model holds great promise as a valuable tool for evaluating embolic agents and studying their performance in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: Transarterial chemoembolization (TACE), which employs drug-eluting embolic agents to obstruct the tumor-feeding vessels while locally releasing chemotherapeutic drugs into the tumor, has become the first-line treatment of unresectable liver cancer over past two decades. Nevertheless, the advancement of effective drug-eluting embolic agents has been retarded due to the lack of appropriate in vitro models for assessing the local embolization and chemotherapy performances in TACE. Here we developed a cirrhotic hepatocellular carcinoma-based decellularized liver cancer model, which preserves the aberrant vasculatures and tumor-specific extracellular matrix of liver cancer, for TACE evaluation. This model incorporates a blood flow simulation component to assess the dynamics of drug release behaviors of chemoembolic agents within tumor-mimicking conditions, more accurately replicating the in vivo environment for the locoregional assessments as compared to conventional in vitro models.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Cirrosis Hepática , Microambiente Tumoral
12.
Plant Sci ; 340: 111974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199385

RESUMEN

The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.


Asunto(s)
Arabidopsis , Isatis , Isatis/genética , Isatis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores , Arabidopsis/metabolismo , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Filogenia
13.
Int Immunopharmacol ; 127: 111365, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104370

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation, with synovial fibroblasts (SFs) playing a pivotal role in its pathogenesis. Dysregulation of microRNA (miRNA) expression in SFs contributes to RA development. Exosomes (Exos) have emerged as effective carriers for therapeutic molecules, facilitating miRNA transfer between cells. This study explores the therapeutic potential of Exos derived from human umbilical cord mesenchymal stem cells (hUCMSCs), loaded with miR-451a, to modulate ATF2 expression, aiming to address RA in both in vivo and in vitro settings. METHODS: In this study, hUCMSC and RA SFs were isolated and identified, and hUCMSC-Exos were extracted and characterized. The influence of hUCMSC-Exos on RA SFs was detected. And hUCMSC-Exos targeting RA SFs was traced. HUCMSCKD-AGO2 was prepared by knocking down AGO2 in hUCMSC. HUCMSCKD-AGO2-Exos was extracted and characterized,and their influence on RA SFs was detected. The miRNA profiles before and after hUCMSC-Exos intervention in RA SFs were mapped to identify differential miRNAs. RT-qPCR was used to verify the differential miRNAs, with hsa-miR-451a finally selected as the target gene. The effect of miR-451a on SFs was detected. The latent binding of miR-451a to activating transcription factor 2 (ATF2) was analyzed. The effect of hUCMSC-ExosmiR-451a on SFs was detected, and the expression of miR-451a and ATF2 was measured by RT-PCR. In vivo, hUCMSC-ExosmiR-451a was injected into the ankle joint of CIA rats, and arthritis index, joint imaging and synovial pathology were assessed. The expression of miR-451a and ATF2 in synovial tissue was detected. Finally, the safety of hUCMSC-ExosmiR-451a in CIA rats was evaluated. RESULTS: This study revealed that hUCMSC-Exos can inhibit RA SFs proliferation, migration and invasion through miRNAs. High throughput sequencing detected 13 miRNAs that could be transmitted from hUCMSCs to RA SFs via hUCMSC-Exos. miR-451a inhibited RA SFs proliferation, migration and invasion by regulating ATF2. hUCMSC-Exos loaded with miR-451a targeted ATF2 to inhibit RA SFs proliferation, migration and invasion, and improve joint inflammation and imaging findings in CIA rats. CONCLUSIONS: This study demonstrates that miR-451a carried by hUCMSC-Exos can play a role in inhibiting RA SFs biological traits and improving arthritis in CIA rats by inhibiting ATF2. The findings suggest a promising treatment for RA and provide insights into the mechanism of action of hUCMSC-Exos in RA. Future research directions will continue to explore the potential in this field.


Asunto(s)
Artritis Reumatoide , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratas , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Exosomas/genética , Exosomas/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cordón Umbilical
14.
Ann Diagn Pathol ; 67: 152221, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925863

RESUMEN

OBJECTIVE: Intrathyroid thymic carcinoma (ITTC) is a rare malignancy. The current understanding of ITTC is inadequate, and there is no standard treatment for ITTC. In the present study, we aimed to explore the clinicopathological characteristics of ITTC and identify potential therapeutic targets. METHODS: The clinicopathological characteristics of 22 ITTC patients at our institution were reviewed. The expression of DNA mismatch repair (MMR) proteins and PD-L1 in ITTC were assessed by immunohistochemistry (IHC). RESULTS: All patients underwent surgery. There were nine females and 13 males, with a slight male predominance. Their ages ranged from 42 to 79 years (average, 54. 1 years). The diameters of the neck masses ranged from 10 to 100 mm (average, 39 mm). Ipsilateral lymph node (LN) dissection was performed in 18 patients: 12 demonstrated LN metastasis, six showed no LN metastasis, and no lymph nodes were dissected in four. One patient had liver metastasis. CK5/6, P63, CD5, and CD117 were expressed in all cases. All cases were negative for TTF1, PAX8, thyroglobulin, and BRAF V600E. DNA MMR protein expression was retained in all tested tumors, and EBV-encoded small RNA (EBER) in situ hybridization was consistently negative. The Ki67 proliferation index ranged from 10 to 70 %. All patients were followed-up for 14-134 months, four died, six were lost to follow-up, and the remaining patients survived without disease. The PD-L1 combined positive score ranged from 10 to 80 (average: 40). CONCLUSION: Our results confirm that CD5 and CD117 co-expression support a diagnosis of ITTC. All tumors in this cohort were DNA MMR-proficient and were not associated with Epstein-Barr virus (EBV) infection. A high CPS for PD-L1 suggests that immune checkpoint inhibitor therapy may be worthy of further exploration in patients with ITTC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Timoma , Neoplasias del Timo , Neoplasias de la Tiroides , Femenino , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Antígeno B7-H1/metabolismo , Timoma/diagnóstico , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/metabolismo , Neoplasias del Timo/complicaciones , Neoplasias de la Tiroides/patología , ADN
15.
Mol Biotechnol ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999920

RESUMEN

BACKGROUND: At present, 5-Fluorouracil (5-FU) is a crucial anti-cancer drug and is widely used for the treatment of various carcinomas, including gastric cancer (GC). The resistance of GC cells to 5-FU is still a matter of great concern. OBJECTIVE: To illustrate the role of PI3K/Akt/mTOR signaling in regulating the cell cycle progression and migration of 5-FU-resistant GC cells. MATERIAL AND METHODS: After the establishment of drug-resistant GC cell lines, the effects of 5-FU and/or BEZ235 (the dual inhibitor of PI3K and mTOR) on the activity of parental or drug-resistant GC cells were explored. The viability and localization of GC cells (MKN-45 and MKN-74) and their drug-resistant cells (MKN-45/R and MKN-74/R) were assessed using MTT assays and immunofluorescence staining. The impacts of 5-FU and/or BEZ235 on GC cell cycle progression and cell migration were assessed via flow cytometry analyses and wound healing assays, respectively. GC tissues were collected from patients with GC sensitive or refractory to 5-FU chemotherapy. RT-qPCR and western blot were conducted to measure PI3K, AKT, and mTOR levels in GC cells or tissues. RESULTS: After 5-FU treatment, GC cells displayed 5-FU resistance and the viability of drug-resistant cells (MKN-45/R and MKN-74/R) was higher than that of parental cells (MKN-45 and MKN-74). The IC50 values for MKN-45 and MKN-45/R were 8.93 ug/ml and 140 ug/ml, and the values for MKN-74 and MKN-74/R were 3.93 ug/ml and 114.29 ug/ml. Additionally, the PI3K/Akt/mTOR signaling pathway was activated in drug-resistant GC cells and tumor tissues of patients refractory to 5-FU chemotherapy, as evidenced by high PI3K, Akt, and mTOR levels in MKN-45/R, MKN-74/R, and GC tissues resistant to 5-FU. BEZ235 promoted cell cycle arrest and suppressed the migration of GC cells. Moreover, the combination of BEZ235 and 5-FU led to more effective suppressive influence on cell cycle progression and cell migration relative to the single 5-FU or BEZ235 treatment. CONCLUSIONS: Silencing of the PI3K/Akt/mTOR signaling pathway suppressed the 5-FU resistance of GC cells.

16.
Inflamm Res ; 72(10-11): 1965-1979, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37768354

RESUMEN

BACKGROUND: Malignant neoplasms are a well-recognized global public health concern, with significant impacts on human health and quality of life. The interplay between tumors and autoimmune rheumatic diseases is complex, and the resulting tumor-associated rheumatic diseases represent a rare and intricate group of conditions that occur in the context of malignant tumors. In addition, various rheumatic diseases can arise as a consequence of oncology treatment. These diseases present with intricate clinical manifestations and pathological features, often rendering them challenging to diagnose and impacting patients' quality of life. Despite this, they have yet to be fully recognized. METHODS: This article presents a literature review of published original articles and review articles concerning paraneoplastic rheumatic syndromes and rheumatic diseases associated with cancer treatment. We conducted a comprehensive literature search in PubMed, Web of Science and Google Scholar databases, excluding duplicated and irrelevant studies. In cases of duplicated research, we selected articles with higher impact factors for the review. RESULTS: This review focuses on the clinical features, diagnosis, and treatment of paraneoplastic rheumatic diseases, as well as the pathogenesis of these diseases. Additionally, we summarize the autoimmune rheumatic diseases associated with cancer treatment. Ultimately, the goal of this review is to enhance recognition and improve the management of autoimmune rheumatic diseases related to tumors.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Síndromes Paraneoplásicos , Enfermedades Reumáticas , Humanos , Calidad de Vida , Neoplasias/complicaciones , Neoplasias/terapia , Síndromes Paraneoplásicos/etiología , Síndromes Paraneoplásicos/diagnóstico , Enfermedades Autoinmunes/complicaciones
17.
Nat Commun ; 14(1): 5097, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607947

RESUMEN

The selective separation of thorium from rare earth elements and uranium is a critical part of the development and application of thorium nuclear energy in the future. To better understand the role of different N sites on the selective capture of Th(IV), we design an ionic COF named Py-TFImI-25 COF and its deionization analog named Py-TFIm-25 COF, both of which exhibit record-high separation factors ranging from 102 to 105. Py-TFIm-25 COF exhibits a significantly higher Th(IV) uptake capacity and adsorption rate than Py-TFImI-25 COF, which also outperforms the majority of previously reported adsorbents. The selective capture of Py-TFImI-25 COF and Py-TFIm-25 COF on thorium is via Th-N coordination interaction. The prioritization of Th(IV) binding at different N sites and the mechanism of selective coordination are then investigated. This work provides an in-depth insight into the relationship between structure and performance, which can provide positive feedback on the design of novel adsorbents for this field.

18.
Int J Radiat Biol ; 99(12): 1830-1840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436484

RESUMEN

PURPOSE: Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS: we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS: We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION: Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.


Asunto(s)
Exosomas , Neuroblastoma , Humanos , Astrocitos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Neuronas/metabolismo , Exosomas/metabolismo
19.
Thromb Res ; 228: 85-93, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301117

RESUMEN

BACKGROUND: The CYP2C19 loss-of-function variants have significant impact on response to clopidogrel. The efficacy and safety of tailored antiplatelet therapy under the guidance of CYP2C19 genetic polymorphisms remains elusive for patients undergoing percutaneous coronary intervention (PCI). OBJECTIVES: The aims of the present study were to investigate the impact of clinical implementation of CYP2C19 genotyping on the selection of oral P2Y12 inhibitor therapy following PCI, and to estimate the risk of adverse outcomes for patients with different genotype status treated with alternative or traditional P2Y12 inhibitor. METHODS: Data from a single-center registry enrolling 41,090 consecutive PCI patients treated with dual antiplatelet therapy after PCI were analyzed. Risk of major adverse cardiovascular events (MACEs) and bleeding events within 12 months after PCI were compared across CYP2C19 genotype and antiplatelet therapy groups using Cox proportional hazards models. RESULTS: CYP2C19 genotyping was successfully achieved for 9081 patients, of whom baseline characteristics significantly differed from non-genotyped patients. A higher proportion of genotyped patients were prescribed ticagrelor compared with non-genotyped patients (27.0 % vs. 15.5 %, P < 0.001). CYP2C19 metabolic status was an independent predictor for use of ticagrelor (P < 0.001). Ticagrelor was significantly associated with a lower risk of MACEs in poor metabolizers (adjusted hazard ratio 0.62, 95 % confidence interval 0.42 to 0.92, P = 0.017), but not in intermediate metabolizers or normal metabolizers. The interaction was not statistically significant (P for interaction = 0.252). CONCLUSIONS: Genotype information on CYP2C19 metabolic status was associated with an increase in the use of potent antiplatelet therapy in PCI patients. Patients prescribed with clopidogrel has a higher risk of MACEs among poor metabolizers, which suggested the potential application of genotype-guided P2Y12 inhibitor selection for improving clinical outcomes.


Asunto(s)
Síndrome Coronario Agudo , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria , Humanos , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/genética , Clopidogrel/administración & dosificación , Clopidogrel/efectos adversos , Clopidogrel/uso terapéutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Pueblos del Este de Asia , Genotipo , Intervención Coronaria Percutánea/efectos adversos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ticagrelor/administración & dosificación , Ticagrelor/efectos adversos , Ticagrelor/uso terapéutico , Resultado del Tratamiento , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Administración Oral
20.
J Mater Chem B ; 11(28): 6560-6566, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37351848

RESUMEN

Developing safe, high-quality theranostic agents for cancer treatment is of great clinical value. In this work, for the first time, the clinical indocyanine green (ICG) is coupled with the biocompatible poly(styrene-alt-maleic anhydride) (PSMAn) to obtain the PSMAn-ICG polymer. The self-assembly of its hydrolyzed product in water results in ICG-conjugated poly(styrene-alt-maleic acid) nanoparticles (PSMA-ICG NPs). Intriguingly, the NPs have many advantages, including good solubility and stability in aqueous solutions, high photostability and decreased hemolytic damage to red blood cells, highlighting the importance of PSMA coupling. More interestingly, PSMA-ICG NPs significantly promote tumor targeting and enable long-term imaging of tumors. Furthermore, the administration of PSMA-ICG NPs in combination with near-infrared laser irradiation provides superior potency in the photothermal therapy of tumors. Furthermore, 9-amino-sialic acid (Sia)-coated PSMA-ICG NPs are fabricated, further enhancing tumor imaging and phototherapy. This is the first report of PSMA-NIR conjugates achieving tumor reduction in mice. Overall, this study provides novel phototheranostic agents with broad clinical transformation prospects.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Estireno/uso terapéutico , Nanomedicina Teranóstica , Fototerapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA