Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Theranostics ; 14(5): 2127-2150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505619

RESUMEN

Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway have promise in patients with advanced melanoma. However, drug resistance usually results in limited patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by them remain to be further identified. Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor tissues were collected before and after treatment for single-nucleus sequencing, and the results were verified using multicolor immunofluorescence staining and public datasets. Results: This study describes four cell subgroups which are closely associated with the effectiveness of anti-PD-1 treatment. It also describes a cell-cell communication network, in which the interaction of the four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed predictive model based on these four subgroups that holds significant potential for assessing the efficacy of anti-PD-1 treatment. Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer guidance for clinical drug administration for melanoma.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Antígeno B7-H1 , Microambiente Tumoral
2.
Cell Biol Toxicol ; 40(1): 9, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311675

RESUMEN

Circular RNAs (circRNAs) have been documented to play crucial roles in the biology of various cancers. However, their investigation in melanoma is still at an early stage, particularly as a broader mechanism beyond acting as miRNA sponges needs to be explored. We report here that circFCHO2(hsa_circ_0002490), a circRNA encompassing exons 19 and 20 of the FCHO2 gene, exhibited a consistent overexpression in melanoma tissues. Furthermore, elevated circFCHO2 levels demonstrated a positive correlation with the malignant phenotype and poor prognosis among the 158 melanoma patients studied. Besides, we observed that heightened levels of circFCHO2 promoted melanoma cell proliferation, migration, and invasion in vitro, along with contributing to tumor growth in vivo. Furthermore, we found differences in the secondary structure of circFCHO2 compared to most other circular RNA structures. It has fewer miRNA binding sites, while it has more RNA binding protein binding sites. We therefore speculate that circFCHO2 may have a function of interacting with RNA binding proteins. Mechanistically, it was confirmed by fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), and western blotting assays that circFCHO2 interacts with dead end protein homolog 1 (DND1) and reverses the inhibition of the PI3K/AKT signaling pathway by binding to DND1. Our findings reveal that circFCHO2 drives melanoma progression by regulating the PI3K/AKT signaling pathway through direct binding to DND1 and may serve as a potential diagnostic biomarker and therapeutic target for the treatment of melanoma.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Melanoma , Proteínas de Neoplasias , ARN Circular , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ , Melanoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Proteínas de Neoplasias/genética , Proteínas de Unión a Ácidos Grasos/genética
3.
Adv Sci (Weinh) ; 11(13): e2304991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286661

RESUMEN

Radiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor-bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single-cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor-derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I-IFN) secretion and M1 polarization via the miR-872-3p/IRF7 axis. Secreted I-IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN-γ and GZMB secretion. Together, the study shows that tumor-derived exosomes promote I-IFN secretion via the circPIK3R3/miR-872-3p/IRF7 axis in macrophages and enhance the anti-tumor immune response of CD8+ T cells.


Asunto(s)
Exosomas , Neoplasias Pulmonares , Melanoma , MicroARNs , Animales , Ratones , Anticuerpos , Linfocitos T CD8-positivos , Exosomas/efectos de la radiación , Hibridación Fluorescente in Situ , Interferones , Neoplasias Pulmonares/radioterapia , Macrófagos/efectos de la radiación , Melanoma/radioterapia , MicroARNs/genética , Microambiente Tumoral , Factor 7 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/efectos de la radiación
4.
Nat Commun ; 14(1): 8119, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065972

RESUMEN

Acral melanoma (AM) is a rare subtype of melanoma characterized by a high incidence of lymph node (LN) metastasis, a critical factor in tumor dissemination and therapeutic decision-making. Here, we employ single-cell and spatial transcriptomic analyses to investigate the dynamic evolution of early AM dissemination. Our findings reveal substantial inter- and intra-tumor heterogeneity in AM, alongside a highly immunosuppressive tumor microenvironment and complex intercellular communication networks, particularly in patients with LN metastasis. Notably, we identify a strong association between MYC+ Melanoma (MYC+MEL) and FGFBP2+NKT cells with LN metastasis. Furthermore, we demonstrate that LN metastasis requires a metabolic shift towards fatty acid oxidation (FAO) induced by MITF in MYC+MEL cells. Etomoxir, a clinically approved FAO inhibitor, can effectively suppress MITF-mediated LN metastasis. This comprehensive dataset enhances our understanding of LN metastasis in AM, and provides insights into the potential therapeutic targeting for the management of early AM dissemination.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Metástasis Linfática , Perfilación de la Expresión Génica , Transcriptoma , Microambiente Tumoral/genética
5.
Cell Death Discov ; 9(1): 397, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880239

RESUMEN

Metastasis is a formidable challenge in the prognosis of melanoma. Accurately predicting the metastatic potential of non-metastatic melanoma (NMM) and determining effective postoperative adjuvant treatments for inhibiting metastasis remain uncertain. In this study, we conducted comprehensive analyses of melanoma metastases using bulk and single-cell RNA sequencing data, enabling the construction of a metastasis score (MET score) through diverse machine-learning algorithms. The reliability and robustness of the MET score were validated using various in vitro assays and in vivo models. Our findings revealed a distinct molecular landscape in metastatic melanoma characterized by the enrichment of metastasis-related pathways, intricate cell-cell communication, and heightened infiltration of pro-angiogenic tumor-associated macrophages compared to NMM. Importantly, patients in the high MET score group exhibited poorer prognoses and an immunosuppressive microenvironment, featuring increased infiltration of regulatory T cells and decreased infiltration of CD8+ T cells, compared to the low MET score patient group. Expression of PD-1 was markedly higher in patients with low MET scores. Anti-PD-1 (aPD-1) therapy profoundly affected antitumor immunity activation and metastasis inhibition in these patients. In summary, our study demonstrates the effectiveness of the MET score in predicting melanoma metastatic potential. For patients with low MET scores, aPD-1 therapy may be a potential treatment strategy to inhibit metastasis. Patients with high MET scores may benefit from combination therapies.

6.
Eur J Med Res ; 28(1): 352, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716991

RESUMEN

BACKGROUND: Melanoma is the deadliest form of skin tumor, and G protein-coupled receptors (GPCRs) play crucial roles in its carcinogenesis. Furthermore, the tumor microenvironment (TME) affects the overall survival (OS) and the response to immunotherapy. The combination of GPCRs and TME from a multi-omics perspective may help to predict the survival of the melanoma patients and their response to immunotherapy. METHODS: Bulk-seq, single-cell RNA sequencing (scRNA-seq), gene mutations, immunotherapy responses, and clinicopathologic feature data were downloaded from public databases, and prognostic GPCRs and immune cells were screened using multiple machine learning algorithms. The expression levels of GPCRs were detected using real-time quantitative polymerase chain reaction (qPCR) in A375 and HaCaT cell lines. The GPCR-TME classifier was constructed and verified using different cohorts and multi-omics. Gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and tracking tumor immunophenotype (TIP) were used to identify the key biological pathways among the GPCR-TME subgroups. Then, tumor mutational burden (TMB), vital mutant genes, antigen presentation genes, and immune checkpoints were compared among the subgroups. Finally, the differences in immunotherapy response rates among the GPCR-TME subgroups were investigated. RESULTS: A total of 12 GPCRs and five immune cell types were screened to establish the GPCR-TME classifier. No significant differences in the expression levels of the 12 GPCRs were found in the two cell lines. Patients with high GPCR score or low TME score had a poor OS; thus, the GPCRlow/TMEhigh subgroup had the most favorable OS. The scRNA-seq result revealed that immune cells had a higher GPCR score than tumor and stromal cells. The GPCR-TME classifier acted as an independent prognostic factor for melanoma. GSEA, WGCNA, and TIP demonstrated that the GPCRlow/TMEhigh subgroup was related to the activation and recruitment of anti-tumor immune cells and the positive regulation of the immune response. From a genomic perspective, the GPCRlow/TMEhigh subgroup had higher TMB, and different mutant genes. Ultimately, higher expression levels of antigen presentation genes and immune checkpoints were observed in the GPCRlow/TMEhigh subgroup, and the melanoma immunotherapy cohorts confirmed that the response rate was highest in the GPCRlow/TMEhigh cohort. CONCLUSIONS: We have developed a GPCR-TME classifier that could predict the OS and immunotherapy response of patients with melanoma highly effectively based on multi-omics analysis.


Asunto(s)
Melanoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Melanoma/genética , Melanoma/terapia , Carcinogénesis , Algoritmos , Inmunoterapia
7.
Future Oncol ; 18(30): 3449-3461, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36214331

RESUMEN

Liposarcoma (LPS) is a rare adipocyte-derived malignancy accounting for 20% of all soft tissue sarcomas. Although surgery and chemotherapy are the standard treatment for LPS, the large tumor burden and high recurrence rate make it difficult to treat, especially when the disease progresses. With the progress of immunotherapies in other tumors such as melanoma and lung cancer, interest has been risen in exploring immunotherapy for LPS. This review discusses the understanding of the tumor microenvironment of LPS; the current status of immunotherapy in LPS, including immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, oncolytic viruses and combination therapies; and the future directions for exploiting strategies to make the effect of immunotherapy stronger and more durable.


Liposarcoma is a rare type of malignant tumor with no effective treatment. Immunotherapy is a new kind of treatment that functions by activating the immune system to kill tumors cells. It has gained significant progress in other cancer types. This review discusses its exploration and application in liposarcoma.


Asunto(s)
Vacunas contra el Cáncer , Liposarcoma , Virus Oncolíticos , Humanos , Lipopolisacáridos , Inmunoterapia , Liposarcoma/tratamiento farmacológico , Vacunas contra el Cáncer/uso terapéutico , Microambiente Tumoral , Factores Inmunológicos
8.
Front Immunol ; 13: 954039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131912

RESUMEN

Background: As a novel immune checkpoint, CD73 has been reported to play prominent roles in several malignancies. However, the significance of CD73 in melanoma remains ambiguous. This study sought to reveal the impact of CD73 on the tumor microenvironment (TME) and patients' prognosis, and to investigate whether CD73 could be a therapeutic target in Chinese melanomas, which were dominated by acral and mucosal subtypes. Methods: Two independent Chinese cohorts of 194 patients with melanoma were enrolled. CD73 and PD-L1 expression as well as CD8+ and CD56+ cell infiltrations were evaluated by immunohistochemistry in 194 resected melanoma samples. Clinical outcomes of patients were assessed utilizing the Kaplan-Meier plotter and Cox proportional hazard analysis. RNA-seq data was obtained from TCGA database. Gene set functional annotations were performed based on GO, KEGG and GSEA analysis. CIBERSORT, ssGSEA and TIMER were used to explore the association between CD73 and immune infiltration. These findings were validated by establishing tumor xenograft model, and functions of tumor-infiltrating immune cells were examined by flow cytometry and immunofluorescence. Results: High CD73 expression showed poorer clinical outcomes and was identified as an independent prognostic indicator for survival in two cohorts. Expression of CD73 was more prevalent than PD-L1 in Chinese melanoma cohorts (54.6% vs 23.2%). Co-expression of both immune checkpoints was infrequent (12.9%) in melanoma, and 54.4% of PD-L1 negative cases showed elevated expression of CD73. CD73high tumors showed a microenvironment with fewer CD8+ T cells and CD56+ NK cells infiltration, which displayed a dysfunctional phenotype. With the treatment of CD73 inhibitor APCP, the amount of CD8+ T cells and CD56+ NK cells infiltrated in tumors was elevated and the immunosuppressive effect of CD73 was eliminated. Conclusions: High CD73 expression was associated with an inhibitory TME and adverse clinical outcomes of melanoma. In comparison to PD-L1, CD73 was more prevalent and possessed more definite prognostic significance. Therefore, it may serve as a prognostic indicator and immunotherapeutic target next to PD-L1 in melanoma for Chinese population.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antígeno B7-H1 , Melanoma , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , China , Proteínas Ligadas a GPI/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor , Melanoma/genética , Melanoma/metabolismo , Pronóstico , Microambiente Tumoral
9.
Ann Transl Med ; 10(5): 241, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35402579

RESUMEN

Background: Melanoma is the most dangerous form of skin cancer because of its high metastatic potential. Potential-N6-methyladenosine (m6A)-related long noncoding RNAs (pMRlncRNAs) play a vital role in malignancy. The identification of prognostic-related pMRlncRNAs and development of risk signatures could improve the prognosis and promote the precise treatment of melanoma. Methods: Gene expression and relevant clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Prognostic-related pMRlncRNAs were selected using univariate Cox regression analysis. Patients with melanoma were classified into different subtypes using the "ConsensusClusterPlus" package, and the ESTIMATE algorithm was applied to depict their immune landscape. A pMRlncRNA risk signature was developed using least absolute shrinkage and selection operator regression analysis and verified using survival analysis and receiver operating characteristic curves. Gene set enrichment analysis (GSEA) was used to investigate the underlying biological pathways. The relationships between risk score and clinicopathological characteristics, as well as programmed cell death-ligand 1 (PD-L1) expression level, were investigated. A nomogram with calibration curves was established to comprehensively predict the outcome of melanoma. Results: Fifteen pMRlncRNAs were significantly associated with overall survival (OS). Two cluster subtypes were identified by consensus clustering. Patients in cluster 2 were associated with better OS, higher PD-L1 expression level, lower T stage, and higher ESTIMATEScore, ImmuneScore, and StromalScore than those in cluster 1. There were differences in immune cell infiltration between the 2 clusters. Ten pMRlncRNAs with prognostic value were selected to develop a risk signature, that functioned as an independent prognostic factor for melanoma. Patients with low-risk scores had a better prognosis in general. The area under the curve (AUC) value (0.720), as well as 1-, 3-, and 5-year calibration curves, revealed that the risk signature has suitable predictive power for prognosis. GSEA revealed 10 pathways that might play important roles in melanoma. Moreover, patients with high-risk scores were associated with advanced T stage, cluster 1, lower ImmuneScore, and higher PD-L1 expression level. Conclusions: We developed a novel 10-pMRlncRNA risk signature that could elucidate the crucial role of pMRlncRNAs in the immune landscape of melanoma and predict prognosis.

10.
Burns ; 48(8): 1893-1908, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016791

RESUMEN

BACKGROUND: Adipose-derived mesenchymal stem cells (adMSCs) are suggested as potential tools for the treatment of regenerative diseases, including tissue repair. This study aimed to explore the function of adMSC-derived apoptotic bodies in skin wound healing and the molecules of action. METHODS: The acquired adMSCs and their-derived apoptotic bodies were identified. A murine model of full-thickness skin wounds was treated with apoptotic bodies. The wound healing process of mice and the pathological changes in wound tissues were examined. Ana-1 macrophages were treated with lipopolysaccharide (LPS) and apoptotic bodies for in vitro experiments. Polarization of macrophages was examined by immunofluorescence staining of the specific biomarkers and ELISA kits. Dermal microvascular endothelial cells (DMECs) or dermal fibroblasts (DFs) were co-cultured with apoptotic bodies or the LPS- and apoptotic bodies-treated Ana-1 cells. Downstream molecules mediated by apoptotic bodies were screened by microarray and bioinformatic analyses. RESULTS: Apoptotic bodies treatment accelerated skin wound healing in mice and promoted formation of granulation tissues and blood vessels in wound tissues. Apoptotic bodies treatment induced M2 polarization of macrophages. The angiogenesis ability of DMECs, and the viability and migration of DFs were increased when co-cultured with the apoptotic bodies-treated Ana-1 cells. MicroRNA (miR)-21-5p was abundantly expressed in ABs, and kruppel like factor 6 (KLF6) mRNA was confirmed as a target of miR-21-5p. Overexpression of KLF6 reduced M2 polarization of macrophages and blocked the promoting effect of apoptotic bodies on wound healing in vitro and in vivo. CONCLUSION: miR-21-5p carried by adMSC-derived apoptotic bodies targets KLF6 to induce M2 polarization of macrophages and augment skin wound healing.


Asunto(s)
Quemaduras , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Animales , Ratones , Factor 6 Similar a Kruppel , Células Endoteliales , Lipopolisacáridos/farmacología , Quemaduras/terapia , Cicatrización de Heridas , Macrófagos , MicroARNs/genética
11.
Bioengineered ; 13(5): 13571-13586, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36700470

RESUMEN

The resistance of melanoma to BRAF inhibitors remains a tough clinical challenge. In order to explore the underlying mechanism of drug resistance in melanoma, we established the resistant cell line to vemurafenib, and assessed the changes of drug-resistant cells on proliferation, apoptosis, oxidative stress and tumor stemness. Our results suggest that phosphoenolpyruvate carboxykinase1 (PCK1) is activated and inhibits the oxidative stress caused by vemurafenib in drug-resistant cells. Long term treatment of vemurafenib increases the expression of PCK1 which reduces the production of reactive oxygen species (ROS) by activating PI3K/Akt pathway. After the inhibition of PCK1 by 3-mercaptopropionic acid (3-MPA), the therapeutic sensitivity of vemurafenib is restored. In conclusion, this study disclosed that drug-resistant cells appeared to regulate their own proliferation, oxidative stress and tumor dryness by activating Akt/PCK1/ROS pathway, and shed new insights into acquiring drug resistance in melanoma.


Asunto(s)
Ácido 3-Mercaptopropiónico , Melanoma , Humanos , Vemurafenib/farmacología , Ácido 3-Mercaptopropiónico/farmacología , Ácido 3-Mercaptopropiónico/uso terapéutico , Fosfoenolpiruvato , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas , Indoles/farmacología , Sulfonamidas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral
12.
J Transl Med ; 17(1): 104, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30925884

RESUMEN

BACKGROUND: Bone marrow-derived stem cells (BMSCs) and chondrocytes have been reported to present "dedifferentiation" and "phenotypic loss" during the chondrogenic differentiation process in cartilage tissue engineering, and cartilage progenitor cells (CPCs) are novel seeding cells for cartilage tissue engineering. In our previous study, cartilage progenitor cells from different subtypes of cartilage tissue were isolated and identified in vitro, but the study on in vivo chondrogenic characteristics of cartilage progenitor cells remained rarely. In the current study, we explored the feasibility of combining cartilage progenitor cells with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce tissue-engineered cartilage and compared the proliferation ability and chondrogenic characteristics of cartilage progenitor cells with those of bone marrow-derived stem cells and chondrocytes. METHODS: These three cells combined with PHBV were cultured in vitro for 1 week without chondrogenic induction and then transplanted subcutaneously into nude mice for 6 weeks. The cell-PHBV constructs were evaluated by gross observation, histological staining, glycosaminoglycan content measurement, biomechanical analysis and RT-PCR. RESULTS: The chondrocyte-PHBV constructs and CPC-PHBV constructs became an ivory-whitish cartilage-like tissue, while the BMSC-PHBV constructs became vascularized 6 weeks after the subcutaneous implantation. Histological examination showed that many typical cartilage structures were present in the chondrocyte group, some typical cartilage structures were observed in the CPC group, while no typical cartilage structures were observed in the BMSC group. CONCLUSIONS: Cartilage progenitor cells may undergo chondrogenesis without chondrogenic induction and are better at chondrogenesis than BMSCs but worse than chondrocytes in the application of cartilage tissue engineering.


Asunto(s)
Cartílago/citología , Poliésteres/química , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Implantes Absorbibles , Animales , Animales Recién Nacidos , Cartílago/efectos de los fármacos , Cartílago/fisiología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/efectos de los fármacos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Desnudos , Poliésteres/farmacología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Porcinos
13.
Acta Biochim Biophys Sin (Shanghai) ; 51(2): 123-130, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590378

RESUMEN

Long non-coding RNAs (lncRNAs) are a class of RNAs whose transcripts are more than 200 nucleotides in length and lack protein-coding ability. Taurine-upregulated gene 1 (TUG1), a novel cancer-related lncRNA, has been documented to be abnormally expressed in various types of cancers and act as an oncogene or anti-oncogene. It has been considered previously that TUG1 is closely related to the cell proliferation, invasion, metastasis, and apoptosis of cancer. In recent years, it has been found that TUG1 acts as a microRNA (miRNA) sponge to indirectly regulate the expression of the miRNA target gene and dominates cancer progression in several types of cancers. However, TUG1 also binds to different miRNAs to produce diverse regulatory mechanisms in the same cancer. TUG1 is expected to be a biomarker and a new therapeutic target for the diagnosis and prognosis of certain cancers. In this review, we highlight the up-to-date original studies that focus on the role of TUG1 sponging miRNA in cancers and summarize the function of TUG1 in cancer progression. The novel TUG1-miRNA regulatory network is comprehensively and minutely included in this review. We hope that this review will help readers obtain a more detailed knowledge of the molecular mechanism by which TUG1 sponging miRNA plays its role in cancers, and provide some insights and directions for future cancer research.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Biomarcadores de Tumor/genética , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Neoplasias/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA