Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38582075

RESUMEN

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Asunto(s)
Glicoproteínas , Proteoma , Proteómica , Flujo de Trabajo , Humanos , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Quininógenos/metabolismo , Quininógenos/química , Polisacáridos/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/química , Fibrinógeno/metabolismo , Fibrinógeno/química , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/análisis
2.
Clin Proteomics ; 20(1): 56, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053024

RESUMEN

BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

3.
OMICS ; 27(7): 299-304, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428608

RESUMEN

Erythrocytosis is characterized by an increase in red cells in peripheral blood. Polycythemia vera, the commonest primary erythrocytosis, results from pathogenic variants in JAK2 in ∼98% of cases. Although some variants have been reported in JAK2-negative polycythemia, the causal genetic variants remain unidentified in ∼80% of cases. To discover genetic variants in unexplained erythrocytosis, we performed whole exome sequencing in 27 patients with JAK2-negative polycythemia after excluding the presence of any mutations in genes previously associated with erythrocytosis (EPOR, VHL, PHD2, EPAS1, HBA, and HBB). We found that the majority of patients (25/27) had variants in genes involved in epigenetic processes, including TET2 and ASXL1 or in genes related to hematopoietic signaling such as MPL and GFIB. Based on computational analysis, we believe that variants identified in 11 patients in this study could be pathogenic although functional studies will be required for confirmation. To our knowledge, this is the largest study reporting novel variants in individuals with unexplained erythrocytosis. Our results suggest that genes involved in epigenetic processes and hematopoietic signaling pathways are likely associated with unexplained erythrocytosis in individuals lacking JAK2 mutations. With very few previous studies targeting JAK2-negative polycythemia patients to identify underlying variants, this study opens a new avenue in evaluating and managing JAK2-negative polycythemia.


Asunto(s)
Policitemia Vera , Policitemia , Humanos , Policitemia/genética , Policitemia/patología , Secuenciación del Exoma , Policitemia Vera/genética , Policitemia Vera/complicaciones , Mutación
4.
J Proteins Proteom ; 13(4): 187-203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213313

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components composed of linear glycosaminoglycan (GAG) side chains attached to a core protein. CSPGs play a vital role in neurodevelopment, signal transduction, cellular proliferation and differentiation and tumor metastasis through interaction with growth factors and signaling proteins. These pleiotropic functions of proteoglycans are regulated spatiotemporally by the GAG chains attached to the core protein. There are over 70 chondroitin sulfate-linked proteoglycans reported in cells, cerebrospinal fluid and urine. A core glycan linker of 3-6 monosaccharides attached to specific serine residues can be extended by 20-200 disaccharide repeating units making intact CSPGs very large and impractical to analyze. The current paradigm of CSPG analysis involves digesting the GAG chains by chondroitinase enzymes and analyzing either the protein part, the disaccharide repeats, or both by mass spectrometry. This method, however, provides no information about the site of attachment or the composition of linker oligosaccharides and the degree of sulfation and/or phosphorylation. Further, the analysis by mass spectrometry and subsequent identification of novel CSPGs is hampered by technical challenges in their isolation, less optimal ionization and data analysis. Unknown identity of the linker oligosaccharide also makes it more difficult to identify the glycan composition using database searching approaches. Following chondroitinase digestion of long GAG chains linked to tryptic peptides, we identified intact GAG-linked peptides in clinically relevant samples including plasma, urine and dermal fibroblasts. These intact glycopeptides including their core linker glycans were identified by mass spectrometry using optimized stepped higher energy collision dissociation and electron-transfer/higher energy collision dissociation combined with hybrid database search/de novo glycan composition search. We identified 25 CSPGs including three novel CSPGs that have not been described earlier. Our findings demonstrate the utility of combining enrichment strategies and optimized high-resolution mass spectrometry analysis including alternative fragmentation methods for the characterization of CSPGs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42485-022-00092-3.

5.
Proteomics ; 22(19-20): e2200077, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689797

RESUMEN

PIK3CA is one of the most frequently mutated genes in human cancers, with the two most prevalent activating mutations being E545K and H1047R. Although the altered intracellular signaling pathways in these cells have been described, the effect of these mutations on their extracellular vesicles (EVs) has not yet been reported. To study altered cellular physiology and intercellular communication through proteomic analysis of EVs, MCF10A cells and their isogenic mutant versions (PIK3CA E545K and H1047R) were cultured and their EVs enriched by differential ultracentrifugation. Proteins were extracted, digested with trypsin and the peptides labeled with tandem mass tag (TMT) reagents and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Four thousand six hundred and fifty-five peptides were identified from 579 proteins of which 522 proteins have been previously described in EVs. Relative quantitation revealed altered levels of EV proteins including several cell adhesion molecules. Mesothelin, E-cadherin, and epithelial cell adhesion molecule were elevated in both mutant cell-derived EVs. Markers of tumor invasion and progression like galectin-3 and transforming growth factor beta induced protein were increased in both mutants. Overall, activating mutations in PIK3CA result in altered EV composition with characteristic changes associated with these hotspot mutations.


Asunto(s)
Vesículas Extracelulares , Proteómica , Humanos , Proteómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Tripsina/metabolismo , Molécula de Adhesión Celular Epitelial/análisis , Molécula de Adhesión Celular Epitelial/metabolismo , Galectina 3/análisis , Galectina 3/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Cadherinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
ACS Omega ; 7(13): 11023-11032, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35415375

RESUMEN

Glycoproteomics, or the simultaneous characterization of glycans and their attached peptides, is increasingly being employed to generate catalogs of glycopeptides on a large scale. Nevertheless, quantitative glycoproteomics remains challenging even though isobaric tagging reagents such as tandem mass tags (TMT) are routinely used for quantitative proteomics. Here, we present a workflow that combines the enrichment or fractionation of TMT-labeled glycopeptides with size-exclusion chromatography (SEC) for an in-depth and quantitative analysis of the glycoproteome. We applied this workflow to study the cellular glycoproteome of an isogenic mammary epithelial cell system that recapitulated oncogenic mutations in the PIK3CA gene, which codes for the phosphatidylinositol-3-kinase catalytic subunit. As compared to the parental cells, cells with mutations in exon 9 (E545K) or exon 20 (H1047R) of the PIK3CA gene exhibited site-specific glycosylation alterations in 464 of the 1999 glycopeptides quantified. Our strategy led to the discovery of site-specific glycosylation changes in PIK3CA mutant cells in several important receptors, including cell adhesion proteins such as integrin ß-6 and CD166. This study demonstrates that the SEC-based enrichment of glycopeptides is a simple and robust method with minimal sample processing that can easily be coupled with TMT-labeling for the global quantitation of glycopeptides.

7.
Mol Cell Proteomics ; 20: 100134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400346

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno/fisiología , Nasofaringe/virología , Proteoma/análisis , COVID-19/inmunología , COVID-19/virología , Cromatografía Liquida , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Interferones/inmunología , Interferones/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Quinasa C/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Opioides/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
8.
J Proteins Proteom ; 12(3): 151-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36619276

RESUMEN

Peptides presented by MHC molecules on the cell surface, or the immunopeptidome, play an important role in the adaptive arm of the immune response. Antigen processing for MHC class I molecules is a ubiquitous pathway present in all nucleated cells which generates and presents peptides of both self and non-self-origin. Peptides with post-translational modifications represent one category of peptides presented by MHC class I molecules. However, owing to the complexity of self-peptides presented by cells, the diversity of peptides with post-translational modifications is not well-studied. In this study, we carried out MHC Class I immunopeptidomics analysis of Loucy T-cell leukemia and A375 malignant melanoma cell line to characterize the diversity of post-translational modifications of MHC class I-bound peptides. Using high resolution mass spectrometry, we identified 25,761 MHC-bound peptides across both cell lines using Bolt and Sequest search engines. The enrichment method was highly specific as ~ 90% of the peptides were of typical length (8-12 amino acids long) and the motifs were expected based on previously reported motifs for MHC I alleles. Among the MHC-bound peptides, we identified phosphorylation as a major post-translational modification followed by deamidation. We observed site-specific localization of these post-translational modifications, at position P4 for phosphorylated peptides and position P3 for deamidated peptides. We identified a smaller number of peptides with acetylated and methylated lysine, possibly due to very low stoichiometric levels of these PTMs compared to phosphorylation and deamidation. Using PEAKS de novo sequencing algorithm, we identified spliced peptides that accounted for ~ 5-7% of MHC-bound peptides that were otherwise similar in their features as normal MHC-bound peptides. We validated the identity of several post-translationally modified peptides and spliced peptides through mass spectrometric analysis of synthetic peptides. Our study confirms post-translationally modified peptides to be present at low stoichiometric levels along with unusual spliced peptides through unbiased identification using high resolution mass spectrometry. Supplementary Information: The online version contains supplementary material available at 10.1007/s42485-021-00066-x.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA