Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636895

RESUMEN

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Galectina 3 , Glioblastoma , Microglía , Microambiente Tumoral , Microglía/metabolismo , Microglía/patología , Galectina 3/metabolismo , Galectina 3/genética , Humanos , Animales , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Invasividad Neoplásica , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Galectinas/genética , Transducción de Señal , Ratones , Regulación Neoplásica de la Expresión Génica
2.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202527

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Asunto(s)
Galectina 3 , Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Galectina 3/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo
3.
J Parkinsons Dis ; 12(s1): S165-S182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662128

RESUMEN

Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson's disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1ß, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Sulfato de Dextran , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Microglía/metabolismo , Modelos Animales , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Trombina , alfa-Sinucleína/metabolismo
4.
J Clin Invest ; 132(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35113813

RESUMEN

New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.


Asunto(s)
Antineoplásicos , Glioblastoma , Antineoplásicos/uso terapéutico , Arginina , Argininosuccinato Sintasa/genética , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Humanos , Hidrolasas , Microglía , Polietilenglicoles
5.
Front Cell Neurosci ; 13: 500, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749689

RESUMEN

For the last two decades, caspases, a family of cysteine-aspartic proteases, have evolved from being considered solely as regulators of apoptosis or inflammation to having a wider range of functions. In this mini review, we focus on the most recent "non-apoptotic" roles of caspases in the CNS, particularly in neurons, astrocytes and oligodendrocytes. Non-apoptotic caspase functions in microglia have already been reviewed extensively elsewhere. Here we discuss the involvement of caspases in the activation of the inflammasome, autophagy, and non-apoptotic forms of cell death such as necroptosis and pyroptosis. Also, we review the involvement of caspases in synapses and the processing of aggregates key to neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. Likewise, we mention the recently described involvement of caspases in mitochondrial biogenesis, which is a function independent of the enzymatic activity. We conclude discussing the relevance that "new" functions of caspases have in the CNS and the future of this field of research.

6.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618637

RESUMEN

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Microglía/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/veterinaria , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Dioxigenasas , Elementos de Facilitación Genéticos , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA