Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chembiochem ; 16(10): 1461-73, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-25892546

RESUMEN

Streptomyces sp. Tü 6176 produces the cytotoxic benzoxazole nataxazole. Bioinformatic analysis of the genome of this organism predicts the presence of 38 putative secondary-metabolite biosynthesis gene clusters, including those involved in the biosynthesis of AJI9561 and its derivative nataxazole, the antibiotic hygromycin B, and ionophores enterobactin and coelibactin. The nataxazole biosynthesis gene cluster was identified and characterized: it lacks the O-methyltransferase gene required to convert AJI9561 into nataxazole. This O-methyltransferase activity might act as a resistance mechanism, as AJI9561 shows antibiotic activity whereas nataxazole is inactive. Moreover, heterologous expression of the nataxazole biosynthesis gene cluster in S. lividans JT46 resulted in the production of AJI9561. Nataxazole biosynthesis requires the shikimate pathway to generate 3-hydroxyanthranilate and an iterative type I PKS to generate 6-methylsalicylate. Production of nataxazole was improved up to fourfold by disrupting one regulatory gene in the cluster. An additional benzoxazole, 5-hydroxynataxazole is produced by Streptomyces sp. Tü 6176. 5-Hydroxynataxazole derives from nataxazole by the activity of an as yet unidentified oxygenase; this implies cross-talk between the nataxazole biosynthesis pathway and an unknown pathway.


Asunto(s)
Antibacterianos/metabolismo , Benzoxazoles/metabolismo , Vías Biosintéticas , Familia de Multigenes , Streptomyces/enzimología , Streptomyces/genética , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Benzoxazoles/farmacología , Línea Celular Tumoral , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Humanos , Ratones , Células 3T3 NIH , Streptomyces/metabolismo
2.
Eukaryot Cell ; 5(10): 1611-21, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17030993

RESUMEN

Gis4 is a new component of the system required for acquisition of salt tolerance in Saccharomyces cerevisiae. The gis4Delta mutant is sensitive to Na(+) and Li(+) ions but not to osmotic stress. Genetic evidence suggests that Gis4 mediates its function in salt tolerance, at least partly, together with the Snf1 protein kinase and in parallel with the calcineurin protein phosphatase. When exposed to salt stress, mutants lacking gis4Delta display a defect in maintaining low intracellular levels of Na(+) and Li(+) ions and exporting those ions from the cell. This defect is due to diminished expression of the ENA1 gene, which encodes the Na(+) and Li(+) export pump. The protein sequence of Gis4 is poorly conserved and does not reveal any hints to its molecular function. Gis4 is enriched at the cell surface, probably due to C-terminal farnesylation. The CAAX box at the C terminus is required for cell surface localization but does not seem to be strictly essential for the function of Gis4 in salt tolerance. Gis4 and Snf1 seem to share functions in the control of ion homeostasis and ENA1 expression but not in glucose derepression, the best known role of Snf1. Together with additional evidence that links Gis4 genetically and physically to Snf1, it appears that Gis4 may function in a pathway in which Snf1 plays a specific role in controlling ion homeostasis. Hence, it appears that the conserved Snf1 kinase plays roles in different pathways controlling nutrient as well as stress response.


Asunto(s)
Homeostasis , Litio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Sodio/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Calcineurina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Secuencia Conservada , Eliminación de Gen , Glucosa/metabolismo , Datos de Secuencia Molecular , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , ATPasa Intercambiadora de Sodio-Potasio
3.
Mol Microbiol ; 62(1): 263-77, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16956380

RESUMEN

Protein phosphatases 2C are a family of conserved enzymes involved in many aspects of the cell biology. We reported that, in the yeast Saccharomyces cerevisiae, overexpression of the Ptc3p isoform resulted in increased lithium tolerance in the hypersensitive hal3 background. We have found that the tolerance induced by PTC3 overexpression is also observed in wild-type cells and that this is most probably the result of increased expression of the ENA1 Na(+)-ATPase mediated by the Hog1 MAP kinase pathway. This effect does not require a catalytically active protein. Surprisingly, deletion of PTC3 (similarly to that of PTC2, PTC4 or PTC5) does not confer a lithium-sensitive phenotype, but mutation of PTC1 does. Lack of PTC1 in an ena1-4 background did not result in additive lithium sensitivity and the ptc1 mutant showed a decreased expression of the ENA1 gene in cells stressed with LiCl. In agreement, under these conditions, the ptc1 mutant was less effective in extruding Li(+) and accumulated higher concentrations of this cation. Deletion of PTC1 in a hal3 background did not exacerbate the halosensitive phenotype of the hal3 strain. In addition, induction from the ENA1 promoter under LiCl stress decreased similarly (50%) in hal3, ptc1 and ptc1 hal3 mutants. Finally, mutation of PTC1 virtually abolishes the increased tolerance to toxic cations provided by overexpression of Hal3p. These results indicate that Ptc1p modulates the function of Ena1p by regulating the Hal3/Ppz1,2 pathway. In conclusion, overexpression of PTC3 and lack of PTC1 affect lithium tolerance in yeast, although through different mechanisms.


Asunto(s)
Cloruro de Litio/toxicidad , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/efectos de los fármacos , División Celular/genética , División Celular/fisiología , Relación Dosis-Respuesta a Droga , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Mutación/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/fisiología , Proteína Fosfatasa 2C , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sodio/toxicidad , ATPasa Intercambiadora de Sodio-Potasio
4.
Eukaryot Cell ; 5(8): 1388-98, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16896222

RESUMEN

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.


Asunto(s)
Factores de Transcripción GATA/fisiología , Regulación Fúngica de la Expresión Génica , Homeostasis , Nitrógeno/metabolismo , Saccharomycetales/fisiología , Adenosina Trifosfatasas/metabolismo , Álcalis/farmacología , Proteínas de Transporte de Catión/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Concentración de Iones de Hidrógeno , Iones , Mutación , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/genética , ATPasa Intercambiadora de Sodio-Potasio , Factores de Transcripción/metabolismo , Activación Transcripcional , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA