Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992782

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Asunto(s)
Carcinoma Hepatocelular , Doxorrubicina , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neoplasias Hepáticas , Células Madre Mesenquimatosas , ARN Mensajero , Animales , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Línea Celular Tumoral , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Ratones Endogámicos C3H , Transfección
2.
J Reprod Immunol ; 164: 104284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908337

RESUMEN

Abnormal placental angiogenesis during gestation resulting from high levels of anti-angiogenic factors, soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin, has been implicated in the progression of preeclampsia (PE). This heterogeneous syndrome (defined by hypertension with or without proteinuria after 20 weeks of pregnancy) remains a major global health burden with long-term consequences for both mothers and child. Previously, we showed that in vivo systemic human (hsFLT1) overexpression led to reduced placental efficiency and PE-like syndrome in mice. Galectins (gal-1, -3 and -9) are critical determinants of vascular adaptation to pregnancy and dysregulation of the galectin-glycan circuits is associated with the development of this life-threatening disease. In this study, we assessed the galectin-glycan networks at the maternal-fetal interface associated with the hsFLT1-induced PE in mice. We observed an increase on the maternal gal-1 expression in the decidua and junctional zone layers of the placenta derived from hs FLT1high pregnancies. In contrast, placental gal-3 and gal-9 expression were not sensitive to the hsFLT1 overexpression. In addition, O- and N-linked glycan expression, poly-LacNAc sequences and terminal sialylation were down-regulated in hsFLT1 high placentas. Thus, the gal-1-glycan axis appear to play an important role counteracting the anti-angiogenic status caused by sFLT1, becoming critical for vascular adaptation at the maternal-fetal interface.


Asunto(s)
Placenta , Preeclampsia , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Embarazo , Femenino , Animales , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ratones , Preeclampsia/metabolismo , Placenta/metabolismo , Glicosilación , Galectinas/metabolismo , Neovascularización Patológica/metabolismo , Modelos Animales de Enfermedad
3.
Mol Biol Rep ; 51(1): 467, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551765

RESUMEN

BACKGROUND: Osteosarcoma (OS) stands out as the most common bone tumor, with approximately 20% of the patients receiving a diagnosis of metastatic OS at their initial assessment. A significant challenge lies in the frequent existence of undetected metastases during the initial diagnosis. Mesenchymal stem cells (MSCs) possess unique abilities that facilitate tumor growth, and their interaction with OS cells is crucial for metastatic spread. METHODS AND RESULTS: We demonstrated that, in vitro, MSCs exhibited a heightened migration response toward the secretome of non-metastatic OS cells. When challenged to a secretome derived from lungs preloaded with OS cells, MSCs exhibited greater migration toward lungs colonized with metastatic OS cells. Moreover, in vivo, MSCs displayed preferential migratory and homing behavior toward lungs colonized by metastatic OS cells. Metastatic OS cells, in turn, demonstrated an increased migratory response to the MSCs' secretome. This behavior was associated with heightened cathepsin D (CTSD) expression and the release of active metalloproteinase 2 (MMP2) by metastatic OS cells. CONCLUSIONS: Our assessment focused on two complementary tumor capabilities crucial to metastatic spread, emphasizing the significance of inherent cell features. The findings underscore the pivotal role of signaling integration within the niche, with a complex interplay of migratory responses among established OS cells in the lungs, prometastatic OS cells in the primary tumor, and circulating MSCs. Pulmonary metastases continue to be a significant factor contributing to OS mortality. Understanding these mechanisms and identifying differentially expressed genes is essential for pinpointing markers and targets to manage metastatic spread and improve outcomes for patients with OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proliferación Celular/genética , Pulmón/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Células del Estroma/patología , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
4.
World J Oncol ; 13(4): 185-189, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36128588

RESUMEN

Background: Breast cancer is one of the most common malignant forms of neoplasia worldwide; programmed death protein 1 (PD-1), an inhibitory receptor of T lymphocytes, and its ligand programmed death ligand 1 (PD-L1), play an important role in the ability of tumor cells to evade the host's immune system. Methods: We conducted a descriptive, observational study using retrospective data and an open evaluation using immunohistochemistry to determine the general prevalence of PD-L1 expression in 63 women with breast cancer who underwent a modified radical mastectomy, or quadrantectomy, with axillary lymph node removal. Results: The prevalence of PD-L1 expression was 32% in patients with breast cancer treated with radical mastectomy. PD-L1 expression was higher in patients with large tumor size (19% for pT1, 37% for pT2, 50% for pT3, and 100% for pT4), metastasis in regional lymph nodes (25% for N0, 38% for N1, 75% for pN2, and 38% for pN3), and higher histological grade carcinoma (0% for grade 1, 23% for grade 2, and 50% for grade 3). Conclusions: These findings suggest that PD-L1 expression is heterogeneous in breast cancer tumors and that its expression varies highly in tumor regions over time. The evaluation of PD-L1 expression is significant, because of the therapeutical implications that could improve the outcomes and prognosis of these patients.

5.
World J Oncol ; 13(2): 53-58, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571342

RESUMEN

Background: In Mexico, about 30% of renal cancer patients are diagnosed in a metastatic state. Despite the recent advances in the treatment of cancer, metastatic renal cancer is still an incurable illness. Thus, identifying prognostic factors helps improve prognosis accuracy and survival prediction for patients. Methods: In this study, we retrospectively analyzed 26 patients with histological diagnosis of renal cell carcinoma, including clear cell and other subtypes in stage IV (metastatic), recurrent or unresectable disease. We performed a multivariate analysis of overall survival regarding the congruity between prognostic scales. Results: Our results showed a significant difference in favor of patients with congruity between scales for progression-free survival (18.9 vs. 3.1 months; P = 0.048) and a tendency towards better overall survival in patients with the congruity of both scales compared to the discordant patients (112 vs. 32 months; P = 0.99). Conclusion: This study highlights the discordance between Memorial Sloan-Kettering Cancer Center and International Metastatic Renal Cell Carcinoma Database Consortium scales, which was associated with worse prognosis with a significant difference in progression-free survival but not in overall survival.

6.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064584

RESUMEN

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Asunto(s)
Regulación de la Expresión Génica , Cirrosis Hepática/patología , Factor de Crecimiento Nervioso/metabolismo , Polisacáridos/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Estrés Fisiológico , Tioacetamida/toxicidad , Animales , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/genética
7.
Apoptosis ; 26(7-8): 447-459, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34024019

RESUMEN

Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Neoplasias Óseas/genética , Línea Celular Tumoral , Supervivencia Celular , Humanos , Neoplasias Pulmonares/genética , Osteosarcoma/genética , Proteómica , Secretoma , Regulación hacia Arriba
8.
Mol Neurobiol ; 57(2): 600-615, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31399955

RESUMEN

Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocampus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis, relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons, suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by showing that intravenous injection of human MSC restores behavioral and hippocampal alterations in experimental sAD, support the potential use of MSC therapy for the treatment of neurodegenerative diseases.


Asunto(s)
Conducta Animal , Hipocampo/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Ansiedad/complicaciones , Ansiedad/patología , Ansiedad/fisiopatología , Conducta Exploratoria , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/complicaciones , Gliosis/patología , Masculino , Aprendizaje por Laberinto , Memoria , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/patología , Tamaño de los Órganos , Ratas Sprague-Dawley , Aprendizaje Espacial , Estreptozocina , Sinapsis/metabolismo
9.
Stem Cell Rev Rep ; 15(4): 612-617, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31119513

RESUMEN

There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 µl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.


Asunto(s)
Envejecimiento , Encéfalo/fisiopatología , Trasplante de Células , Trastornos de la Memoria/terapia , Memoria Espacial , Cordón Umbilical , Animales , Femenino , Humanos , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratas , Ratas Sprague-Dawley
10.
Behav Brain Res ; 374: 111887, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-30951751

RESUMEN

There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 µl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.


Asunto(s)
Envejecimiento/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Memoria Espacial/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Proteína Doblecortina , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Microglía/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Memoria Espacial/fisiología , Lóbulo Temporal/efectos de los fármacos , Lóbulo Temporal/metabolismo
11.
J Hepatol ; 71(1): 78-90, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30880225

RESUMEN

BACKGROUND & AIMS: A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). METHODS: We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. RESULTS: Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. CONCLUSIONS: The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy. LAY SUMMARY: In this study, we found that mutations and changes in expression of epigenetic modifiers are common events in human hepatocellular carcinoma, leading to an aggressive gene expression program and poor clinical prognosis. The transcriptional program can be reversed by pharmacological inhibition of Jumonji enzymes. This inhibition blocks hepatocellular carcinoma progression, providing a novel potential therapeutic strategy.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis , Carcinoma Hepatocelular , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Neoplasias Hepáticas , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteína A Centromérica/genética , Descubrimiento de Drogas , Humanos , Cinesinas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Ratones , Mutación , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Transcriptoma , Quinasa Tipo Polo 1
12.
Oncotarget ; 8(46): 80235-80248, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113298

RESUMEN

New therapies are needed for advanced hepatocellular carcinoma (HCC) and the use of mesenchymal stromal cells (MSCs) carrying therapeutic genes is a promising strategy. HCC produce cytokines recruiting MSCs to the tumor milieu and modifying its biological properties. Our aim was to study changes generated on human MSCs exposed to conditioned media (CM) derived from human HCC fresh samples and xenografts. All CM shared similar cytokines expression pattern including CXCL1-2-3/GRO, CCL2/MCP-1 and CXCL8/IL-8 being the latter with the highest concentration. Neutralizing and knockdown experiments of CCL2/MCP-1, CXCL8/IL-8, CXCR1 and CXCR2 reduced in vitro MSC migration of ≥20%. Simultaneous CXCR1 and CXCR2 neutralization resulted in 50% of MSC migration inhibition. MSC stimulated with CM (sMSC) from HuH7 or HC-PT-5 showed a 2-fold increase of migration towards the CM compared with unstimulated MSC (usMSC). Gene expression profile of sMSC showed ~500 genes differentially expressed compared with usMSC, being 46 genes related with cell migration and invasion. sMSC increased fibroblasts and endothelial cells chemotaxis. Finally, sMSC with HuH7 CM and then inoculated in HCC tumor bearing-mice did not modify tumor growth. In this work we characterized factors produced by HCC responsible for the changes in MSC chemotactic capacity with would have an impact on therapeutic use of MSCs for human HCC.

13.
Stem Cell Res Ther ; 7(1): 172, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27876093

RESUMEN

BACKGROUND: Cirrhosis is a major health problem worldwide and new therapies are needed. Hepatic macrophages (hMø) have a pivotal role in liver fibrosis, being able to act in both its promotion and its resolution. It is well-known that mesenchymal stromal cells (MSCs) can modulate the immune/inflammatory cells. However, the effects of MSCs over hMø in the context of liver fibrosis remain unclear. We previously described evidence of the antifibrotic effects of in vivo applying MSCs, which were enhanced by forced overexpression of insulin-like growth factor 1 (AdIGF-I-MSCs). The aim of this work was to analyze the effect of MSCs on hMø behavior in the context of liver fibrosis resolution. METHODS: Fibrosis was induced in BALB/c mice by chronic administration of thioacetamide (8 weeks). In vivo gene expression analyses, in vitro experiments using hMø isolated from the nonparenchymal liver cells fraction, and in vivo experiments with depletion of Mø were performed. RESULTS: One day after treatment, hMø from fibrotic livers of MSCs-treated animals showed reduced pro-inflammatory and pro-fibrogenic gene expression profiles. These shifts were more pronounced in AdIGF-I-MSCs condition. This group showed a significant upregulation in the expression of arginase-1 and a higher downregulation of iNOS expression thus suggesting decreased levels of oxidative stress. An upregulation in IGF-I and HGF expression was observed in hMø from AdIGF-I-MSCs-treated mice suggesting a restorative phenotype in these cells. Factors secreted by hMø, preconditioned with MSCs supernatant, caused a reduction in the expression levels of hepatic stellate cells pro-fibrogenic and activation markers. Interestingly, hMø depletion abrogated the therapeutic effect achieved with AdIGF-I-MSCs therapy. Expression profile analyses for cell cycle markers were performed on fibrotic livers after treatment with AdIGF-I-MSCs and showed a significant regulation in genes related to DNA synthesis and repair quality control, cell cycle progression, and DNA damage/cellular stress compatible with early induction of pro-regenerative and hepatoprotective mechanisms. Moreover, depletion of hMø abrogated such effects on the expression of the most highly regulated genes. CONCLUSIONS: Our results indicate that AdIGF-I-MSCs are able to induce a pro-fibrotic to resolutive phenotype shift on hepatic macrophages, which is a key early event driving liver fibrosis amelioration.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Cirrosis Hepática/terapia , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Tioacetamida/farmacología , Regulación hacia Arriba/efectos de los fármacos
14.
Glycobiology ; 25(8): 825-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25882295

RESUMEN

Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Himecromona/farmacología , Cirrosis Hepática/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Administración Oral , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C3H , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tioacetamida , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Stem Cells Dev ; 24(6): 791-801, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25315017

RESUMEN

Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis.


Asunto(s)
Terapia Genética , Factor I del Crecimiento Similar a la Insulina/genética , Cirrosis Hepática/terapia , Hígado/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Adenoviridae/genética , Animales , Proliferación Celular , Fibrosis/terapia , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/fisiología , Hepatocitos/metabolismo , Hepatocitos/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos BALB C
16.
PLoS One ; 9(9): e107944, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25238610

RESUMEN

We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/inmunología , Células Dendríticas/efectos de los fármacos , Ácido Hialurónico/farmacología , Medios de Cultivo , Humanos , Células Tumorales Cultivadas , Microambiente Tumoral
17.
Biomed Res Int ; 2014: 837420, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147818

RESUMEN

Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.


Asunto(s)
Médula Ósea/patología , Carcinoma Hepatocelular/patología , Movimiento Celular/fisiología , Neoplasias Hepáticas/patología , Células Madre Mesenquimatosas/patología , Receptores del Factor Autocrino de Motilidad/metabolismo , Cordón Umbilical/patología , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Carcinoma Hepatocelular/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Línea Celular , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Cordón Umbilical/metabolismo
18.
PLoS One ; 9(4): e95171, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736611

RESUMEN

BACKGROUND AND AIMS: Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC. METHODS: Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated. RESULTS: AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro. CONCLUSION: AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Glucosa-6-Fosfato Isomerasa/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Mesenquimatosas/metabolismo , Animales , Carcinoma Hepatocelular/genética , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Activación Enzimática/efectos de los fármacos , Glucosa-6-Fosfato Isomerasa/farmacología , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Metaloendopeptidasas/metabolismo , Ratones , Carga Tumoral
19.
Liver Int ; 34(3): 330-42, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24112437

RESUMEN

Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.


Asunto(s)
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Terapia Genética/métodos , Humanos , Ratones , Microambiente Tumoral
20.
Angiogenesis ; 17(1): 119-28, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24068342

RESUMEN

During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.


Asunto(s)
Células Dendríticas/metabolismo , Cirrosis Hepática/metabolismo , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígeno CD11c/biosíntesis , Antígeno CD11c/genética , Células Dendríticas/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Ratones , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA