Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomed Pharmacother ; 163: 114760, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119741

RESUMEN

BACKGROUND: and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to ß-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH: The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS: Tigecycline showed an antiproliferative activity targeting the Wnt/ß-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS: Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Tigeciclina/efectos adversos , beta Catenina/metabolismo , Neoplasias Colorrectales/genética , Carcinogénesis , Transformación Celular Neoplásica/metabolismo , Vía de Señalización Wnt , Antineoplásicos/efectos adversos , Inmunidad , Antibacterianos/efectos adversos , Proliferación Celular
2.
Clin Immunol ; 247: 109220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596403

RESUMEN

Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαß+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-ß and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-ß/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.


Asunto(s)
Linfocitos T CD8-positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Espondiloartropatías , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Inflamación , Mucosa Intestinal , Intestinos , Receptores de Antígenos de Linfocitos T alfa-beta , Espondiloartropatías/genética , Factor de Crecimiento Transformador beta
3.
Front Immunol ; 13: 1078678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505403

RESUMEN

Background: Melanocortins are peptides endowed with anti-inflammatory and pro-resolving activities. Many of these effects are mediated by the Melanocortin receptor 1 (MC1) as reported in several experimental settings. As such, MC1 can be a viable target for the development of new therapies that mimic endogenous pro-resolving mediators. The aim of this study was to assess the immunopharmacology of a selective MC1 agonist (PL8177) in vitro and in a mouse model of inflammatory arthritis. Methods: PL8177 and the natural agonist αMSH were tested for activation of mouse and human Melanocortin receptors (MC1,3,4,5), monitoring cAMP accumulation and ERK1/2 phosphorylation, using transiently transfected HEK293A cells. The anti-inflammatory and pro-resolving effects of PL8177 and αMSH were evaluated using mouse peritoneal Macrophages. Finally, a model of K/BxN serum transfer induced arthritis was used to determine the in vivo potential of PL8177. Results: PL8177 activates mouse and human MC1 with apparent EC50 values of 0.01 and 1.49 nM, respectively, using the cAMP accumulation assay. Similar profiles were observed for the induction of ERK phosphorylation (EC50: 0.05 and 1.39 nM). PL8177 displays pro-resolving activity (enhanced Macrophage efferocytosis) and counteracts the inflammatory profile of zymosan-stimulated macrophages, reducing the release of IL-1ß, IL-6, TNF-α and CCL-2. In the context of joint inflammation, PL8177 (3mg/kg i.p.) reduces clinical score, paw swelling and incidence of severe disease as well as the recruitment of immune cells into the arthritic joint. Conclusion: These results demonstrate that the MC1 agonism with PL8177 affords therapeutic effects in inflammatory conditions including arthritis. Significance: Drugs targeting the Melanocortin system have emerged as promising therapeutics for several conditions including inflammation or obesity. Multiple candidates are under clinical development, and some have already reached approval. Here we present the characterization of a novel drug candidate, PL8177, selective for the Melanocortin 1 receptor (MC1), demonstrating its selectivity profile on cAMP and ERK1/2 phosphorylation signaling pathways, of relevance as selective drugs will translate into lesser off-target effect. PL8177 also demonstrated, not only anti-inflammatory activity, but pro-resolving actions due to its ability to enhance efferocytosis (i.e. the phagocytosis of apoptotic cells), endowing this molecule with therapeutic advantages compared to classical anti-inflammatory drugs. Using a mouse model of inflammatory arthritis, the compound demonstrated in vivo efficacy by reducing clinical score, paw swelling and overall disease severity. Taken together, these results present Melanocortin-based therapies, and specifically targeting MC1 receptor, as a promising strategy to manage chronic inflammatory diseases.


Asunto(s)
Artritis , Fagocitosis , Humanos , Artritis/tratamiento farmacológico , alfa-MSH , Inflamación/tratamiento farmacológico , Macrófagos
4.
Curr Rheumatol Rep ; 24(12): 398-410, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197645

RESUMEN

PURPOSE OF REVIEW: Ankylosing spondylitis (AS) is strongly associated with the HLA-B27 gene. The canonical function of HLA-B27 is to present antigenic peptides to CD8 lymphocytes, leading to adaptive immune responses. The 'arthritogenic peptide' theory as to the mechanism by which HLA-B27 induces ankylosing spondylitis proposes that HLA-B27 presents peptides derived from exogenous sources such as bacteria to CD8 lymphocytes, which subsequently cross-react with antigens at the site of inflammation of the disease, causing inflammation. This review describes findings of studies in AS involving profiling of T cell expansions and discusses future research opportunities based on these findings. RECENT FINDINGS: Consistent with this theory, there is an expanding body of data showing that expansion of a restricted pool of CD8 lymphocytes is found in most AS patients yet only in a small proportion of healthy HLA-B27 carriers. These exciting findings strongly support the theory that AS is driven by presentation of antigenic peptides to the adaptive immune system by HLA-B27. They point to new potential approaches to identify the exogenous and endogenous antigens involved and to potential therapies for the disease.


Asunto(s)
Antígeno HLA-B27 , Espondilitis Anquilosante , Humanos , Antígeno HLA-B27/genética , Espondilitis Anquilosante/genética , Linfocitos T CD8-positivos , Péptidos , Inflamación
5.
Front Immunol ; 13: 838328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251032

RESUMEN

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Asunto(s)
Atrofia/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Mucosa Intestinal/inmunología , Ganglios Linfáticos Agregados/inmunología , Linfocitos B/inmunología , Humanos , Tejido Linfoide/inmunología , Macrófagos/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología
6.
Mol Nutr Food Res ; 65(3): e2000812, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33300660

RESUMEN

SCOPE: Capsicum annuum L. cv Senise is a sweet pepper containing health promoting compounds that can be modified by ripening and drying. This study focuses on finding the peppers with the best antioxidant properties, which are evaluated on an experimental model of obesity. METHODS AND RESULTS: Phytochemical profile and antioxidant activity are evaluated on several peppers obtained from the same cultivar at different ripening stages. Red sweet peppers show the highest content in polyphenols, ß-carotene, lycopene, and capsinoids, and demonstrate the best antioxidant activity in vitro. Mice fed a high fat diet are orally treated with an extract from these peppers (Capsicum annuum extract [CAE]) (1, 10, and 25 mg/kg/day). It promotes weight loss and improves plasma markers related to glucose and lipid metabolisms. CAE also ameliorates obesity-associated systemic inflammation reducing the expression of pro-inflammatory cytokines in adipose and hepatic tissues and improving the expression of different markers involved in the gut epithelial barrier function. These effects are associated with a modulation of the intestinal microbiome, which appears altered. CONCLUSIONS: The extract can be considered a new potential approach for the treatment of obesity, complementary to dietary restrictions.


Asunto(s)
Antioxidantes/farmacología , Capsicum/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/dietoterapia , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Carotenoides/análisis , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/microbiología , Extractos Vegetales/química
7.
J Immunol ; 205(10): 2840-2849, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33008950

RESUMEN

Polyunsaturated fatty acids (PUFAs) and their metabolites are potent regulators of inflammation. Generally, omega (n)-3 PUFAs are considered proresolving whereas n-6 PUFAs are classified as proinflammatory. In this study, we characterized the inflammatory response in murine peritonitis and unexpectedly found the accumulation of adrenic acid (AdA), a poorly studied n-6 PUFA. Functional studies revealed that AdA potently inhibited the formation of the chemoattractant leukotriene B4 (LTB4), specifically in human neutrophils, and this correlated with a reduction of its precursor arachidonic acid (AA) in free form. AdA exposure in human monocyte-derived macrophages enhanced efferocytosis of apoptotic human neutrophils. In vivo, AdA treatment significantly alleviated arthritis in an LTB4-dependent murine arthritis model. Our findings are, to our knowledge, the first to indicate that the n-6 fatty acid AdA effectively blocks production of LTB4 by neutrophils and could play a role in resolution of inflammation in vivo.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Experimental/inmunología , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Peritonitis/inmunología , Animales , Antiinflamatorios/análisis , Ácido Araquidónico/metabolismo , Artritis Experimental/patología , Células Cultivadas , Ácidos Grasos Omega-6/análisis , Ácidos Grasos Insaturados/análisis , Humanos , Leucotrieno B4/metabolismo , Lipidómica , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Lavado Peritoneal , Peritonitis/patología , Cultivo Primario de Células , Células THP-1 , Zimosan/administración & dosificación , Zimosan/inmunología
8.
Bioorg Med Chem Lett ; 30(18): 127414, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717615

RESUMEN

Fumaria genus has been traditionally used for managing inflammatory and gastrointestinal disorders. The study evaluates the immunomodulatory potential of the total alkaloid fraction from Fumaria capreolata L. (AFC) in primary macrophages and the intestinal anti-inflammatory effect in a dextran sodium sulphate-induced colitis in mice. AFC inhibited LPS-stimulated bone marrow-derived macrophages gene expression program dose-dependently. In vivo, AFC markedly reduced macroscopic and microscopic signs of intestinal inflammation. Besides, it restored the colonic expression of pro-inflammatory and anti-inflammatory mediators, as well as enhanced the expression of intestinal barrier markers. These results demonstrate the potential of AFC extract as a therapeutic tool for the management of inflammatory bowel disease.


Asunto(s)
Alcaloides/química , Antiinflamatorios/química , Colitis/tratamiento farmacológico , Fumaria/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Extractos Vegetales/química , Alcaloides/farmacología , Animales , Antiinflamatorios/farmacología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Intestinos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología
9.
Mol Nutr Food Res ; 64(13): e2000005, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32415899

RESUMEN

SCOPE: Obesity is characterized by a dysfunction in the adipose tissue and an inflammatory subclinical state leading to insulin resistance and increased risk of cardiovascular diseases. It is also associated with intestinal dysbiosis that contributes to inflammation development. Lippia citriodora (LCE) contains high levels of polyphenolpropanoids and has shown promising results in obesity. The aim of this study is to investigate a well-characterized extract of LCE in a model of metabolic syndrome in mice, focusing on its effects on metabolic tissues, endothelial dysfunction, and microbiome. METHODS: Mice are fed a high fat diet (HFD) for six weeks and treated daily with LCE (1, 10, and 25 mg kg-1 ). Glucose and lipid metabolism is investigated. The inflammatory state in the metabolic tissues and the intestinal microbiota composition are characterized, as well as the endothelium-dependent vasodilator response to acetylcholine. RESULTS: LCE reduces fat accumulation and improves plasma glycemic and lipid profiles, as well as the inflammatory process and vascular dysfunction. Moreover, LCE lessens intestinal dysbiosis, as it reduces the Firmicutes/Bacteroidetes ratio and increases Akkermansia abundance in comparison with untreated HFD mice. CONCLUSION: The antiobesity therapeutic properties of LCE are most probably mediated by the synergic effects of its bioactive compounds.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lippia/química , Obesidad/dietoterapia , Extractos Vegetales/farmacología , Animales , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Disbiosis/dietoterapia , Disbiosis/microbiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Microbioma Gastrointestinal/fisiología , Prueba de Tolerancia a la Glucosa , Lípidos/sangre , Masculino , Síndrome Metabólico/dietoterapia , Síndrome Metabólico/microbiología , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/microbiología , Extractos Vegetales/química
10.
Food Res Int ; 127: 108722, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31882094

RESUMEN

The metabolic syndrome has been associated with an alteration of intestinal microbiota, which can be considered as a target for the management of these patients. Phenolic extracts from Hibiscus sabdariffa have shown beneficial effects on obesity and its related complications. However, their effects on gut microbiota have not been investigated yet. This study evaluates the effects of a chemically characterized polyphenolic extract of H. sabdariffa (HSE) in an experimental model of diet-induced obesity (DIO) in mice. HSE was administered daily by oral gave for 42 days. HSE reduced weight increase in high fat diet (HFD)-fed mice, and improved glucose tolerance, insulin sensitivity and normalized LDL/HDL cholesterol ratio. It also enhanced the inflammatory state in the liver, reducing the expression of different adipokines and proinflammatory mediators, and reinforced gut integrity by increasing the expression of mucins and proteins involved in the maintenance of mucosal barrier. Moreover, HSE had a prebiotic effect, ameliorating the changes in the gut microbiota induced by the HFD. Thus, HSE improved the Firmicutes/Bacteroidetes ratio, which may contribute to the beneficial effects. Consequently, HSE could be considered for the development of a complementary treatment for the metabolic syndrome due to its beneficial properties.


Asunto(s)
Hibiscus/química , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Prebióticos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Mol Nutr Food Res ; 61(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28731213

RESUMEN

SCOPE: Extracts from olive (Olea europaea) leaves are used in Mediterranean traditional medicine as anti-inflammatory agents. They contain antioxidant phenolic compounds, such as oleuropeoside, which could be interesting for the treatment of inflammatory conditions associated with oxidative stress in humans, including inflammatory bowel disease. METHODS AND RESULTS: The anti-inflammatory effects of olive leaf extract (0.5-25 mg/kg) were studied in two mice models of colitis (DSS and DNBS). Olive leaf extract (0.1-100 µg/mL) immunomodulatory effects were also investigated in different cell types and in ex vivo organ cultures of mucosal explants of healthy donors and Crohn's disease (CD) patients. The extract showed effect in both colitis models reducing the expression of proinflammatory mediators (IL-1ß, TNF-α, and iNOS), and improving the intestinal epithelial barrier integrity restoring the expression of ZO-1, MUC-2, and TFF-3. These effects were confirmed in vitro. Furthermore, it reduced the production of proinflammatory mediators (IL-1ß, IL-6, IL-8, and TNF-α) in intestinal mucosal samples from CD patients. CONCLUSION: Olive leaf extract presented intestinal anti-inflammatory activity in colitis mouse models, maybe be related to its immunomodulatory properties and the capacity to restore the intestinal epithelial barrier. Besides, the extract could also regulate the activity of cells involved in the inflammatory response.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Olea/química , Extractos Vegetales/farmacología , Animales , Bencenosulfonatos , Células CACO-2 , Línea Celular Tumoral , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Inflamación/inducido químicamente , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoterapia , Hojas de la Planta/química , Células RAW 264.7
12.
Phytomedicine ; 23(9): 901-13, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27387398

RESUMEN

BACKGROUND: Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. PURPOSE: To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. STUDY DESIGN AND METHODS: AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. RESULTS: The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1ß, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. CONCLUSION: The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function.


Asunto(s)
Alcaloides/farmacología , Antiinflamatorios/farmacología , Colitis/prevención & control , Fumaria/química , Extractos Vegetales/farmacología , Alcaloides/química , Animales , Línea Celular , Colitis/inducido químicamente , Citocinas/antagonistas & inhibidores , Dinitrofluorobenceno/análogos & derivados , Células Epiteliales/efectos de los fármacos , Factores Inmunológicos/farmacología , Interleucina-6/antagonistas & inhibidores , Ratones , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
13.
J Ethnopharmacol ; 190: 142-58, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27269390

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plants from genus Lavandula have been used as anti-inflammatory drugs in Mediterranean traditional medicine. Nowadays, there is a growing interest for complementary medicine, including herbal remedies, to treat inflammatory bowel disease (IBD). AIM OF THE STUDY: To test the anti-inflammatory properties of Lavandula dentata and Lavandula stoechas extracts in two inflammatory experimental models: TNBS model of rat colitis and the carrageenan-induced paw edema in mice, in order to mimic the intestinal conditions and the extra-intestinal manifestations of human IBD, respectively. MATERIAL AND METHODS: The extracts were characterized through the qualitative HPLC analysis. Then, they were assayed in vitro and in vivo. In vitro studies were performed in BMDMs and CMT-93 epithelial cells with different concentrations of the extracts (ranging from 0.1 to 100µg/ml). The extracts were tested in vivo in the TNBS model of rat colitis (10 and 25mg/kg) and in the carrageenan-induced paw edema in mice (10, 25 and 100mg/kg). RESULTS: L. dentata and L. stoechas extracts displayed immunomodulatory properties in vitro down-regulating different mediators of inflammation like cytokines and nitric oxide. They also showed anti-inflammatory effects in the TNBS model of colitis as evidenced by reduced myeloperoxidase activity and increased total glutathione content, indicating a decrease of neutrophil infiltration and an improvement of the oxidative state. Besides, both extracts modulated the expression of pro-inflammatory cytokines and chemokines, and ameliorated the altered epithelial barrier function. They also displayed anti-inflammatory effects in the carrageenan-induced paw edema in mice, since a significant reduction of the paw thickness was observed. This was associated with a down-regulation of the expression of different inducible enzymes like MMP-9, iNOS and COX-2 and pro-inflammatory cytokines, all involved in the maintenance of the inflammatory condition. CONCLUSION: L. dentata and L. stoechas extracts showed intestinal anti-inflammatory effect, confirming their potential use as herbal remedies in gastrointestinal disorders. In addition, their anti-inflammatory effect was also observed in other locations, thus suggesting a possible use for the treatment of the extra-intestinal symptoms of IBD.


Asunto(s)
Antiinflamatorios/farmacología , Colitis/prevención & control , Edema/prevención & control , Lavandula/química , Metanol/química , Extractos Vegetales/farmacología , Solventes/química , Animales , Antiinflamatorios/aislamiento & purificación , Carragenina , Línea Celular , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Edema/inducido químicamente , Edema/inmunología , Edema/metabolismo , Femenino , Glutatión/metabolismo , Mediadores de Inflamación/metabolismo , Lavandula/clasificación , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Infiltración Neutrófila/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fitoterapia , Componentes Aéreos de las Plantas/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Ratas Wistar , Ácido Trinitrobencenosulfónico
14.
Pharmacol Res ; 97: 48-63, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25917208

RESUMEN

Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses.


Asunto(s)
Antibacterianos/uso terapéutico , Colitis/tratamiento farmacológico , Doxiciclina/uso terapéutico , Probióticos/uso terapéutico , Saccharomyces , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/patología , Terapia Combinada , Citocinas/metabolismo , Sulfato de Dextran , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Interleucina-8/antagonistas & inhibidores , Interleucina-8/biosíntesis , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Recurrencia , Ácido Trinitrobencenosulfónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA