Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
EBioMedicine ; 82: 104159, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35905539

RESUMEN

BACKGROUND: Psychiatric diseases such as depression and anxiety are multifactorial conditions, highly prevalent in western societies. Human studies have identified a number of high-risk genetic variants for these diseases. Among them, polymorphisms in the promoter region of the serotonin transporter gene (SLC6A4) have attracted much attention. However, due to the paucity of experimental models, molecular alterations induced by these genetic variants and how they correlate to behavioral deficits have not been examined. In this regard, marmosets have emerged as a powerful model in translational neuroscience to investigate molecular underpinnings of complex behaviors. METHODS: Here, we took advantage of naturally occurring genetic polymorphisms in marmoset SLC6A4 gene that have been linked to anxiety-like behaviors. Using FACS-sorting, we profiled microRNA contents in different brain regions of genotyped and behaviorally-phenotyped marmosets. FINDINGS: We revealed that marmosets bearing different SLC6A4 variants exhibit distinct microRNAs signatures in a region of the prefrontal cortex whose activity has been consistently altered in patients with depression/anxiety. We also identified Deleted in Colorectal Cancer (DCC), a gene previously linked to these diseases, as a downstream target of the differently expressed microRNAs. Significantly, we showed that levels of both microRNAs and DCC in this region were highly correlated to anxiety-like behaviors. INTERPRETATION: Our findings establish links between genetic variants, molecular modifications in specific cortical regions and complex behavioral responses, providing new insights into gene-behavior relationships underlying human psychopathology. FUNDING: This work was supported by France National Agency, NRJ Foundation, Celphedia and Fondation de France as well as the Wellcome Trust.


Asunto(s)
Callithrix , MicroARNs , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Ansiedad/genética , Ansiedad/patología , Callithrix/genética , Humanos , MicroARNs/genética , Polimorfismo Genético , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
2.
Cell Rep ; 40(1): 111034, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793632

RESUMEN

Striatal cholinergic interneurons (CINs) respond to salient or reward prediction-related stimuli after conditioning with brief pauses in their activity, implicating them in learning and action selection. This pause is lost in animal models of Parkinson's disease. How this signal regulates the striatal network remains an open question. Here, we examine the impact of CIN firing inhibition on glutamatergic transmission between the cortex and the medium spiny neurons expressing dopamine D1 receptor (D1 MSNs). Brief interruption of CIN activity has no effect in control conditions, whereas it increases glutamatergic responses in D1 MSNs after dopamine denervation. This potentiation depends upon M4 muscarinic receptor and protein kinase A. Decreasing CIN firing by optogenetics/chemogenetics in vivo partially rescues long-term potentiation in MSNs and motor learning deficits in parkinsonian mice. Our findings demonstrate that the control exerted by CINs on corticostriatal transmission and striatal-dependent motor-skill learning depends on the integrity of dopaminergic inputs.


Asunto(s)
Interneuronas , Trastornos Parkinsonianos , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Interneuronas/metabolismo , Ratones , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo
3.
RNA Biol ; 8(4): 557-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21697652

RESUMEN

The functional significance of microRNA-9 (miR-9) during evolution is evidenced by its conservation at the nucleotide level from flies to humans but not its diverse expression patterns. Recent studies in several model systems reveal that miR-9 can regulate neurogenesis through its actions in neural or non-neural cell lineages. In vertebrates, miR-9 exerts diverse cell-autonomous effects on the proliferation, migration, and differentiation of neural progenitor cells by modulating different mRNA targets. In some developmental contexts, miR-9 suppresses apoptosis and is misregulated in several types of cancer cells, influencing proliferation or metastasis formation. Moreover, downregulation of miR-9 in postmitotic neurons is also implicated in some neurodegenerative diseases. Thus, miR-9 is emerging as an important regulator in development and disease through its ability to modulate different targets in a manner dependent on the developmental stage and the cellular context.


Asunto(s)
Evolución Biológica , MicroARNs , Neoplasias/genética , Neurogénesis/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia/genética
4.
J Neurosci ; 30(37): 12414-23, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20844136

RESUMEN

Nociceptors in peripheral ganglia display a remarkable functional heterogeneity. They can be divided into the following two major classes: peptidergic and nonpeptidergic neurons. Although RUNX1 has been shown to play a pivotal role in the specification of nonpeptidergic neurons, the mechanisms driving peptidergic differentiation remain elusive. Here, we show that hepatocyte growth factor (HGF)-Met signaling acts synergistically with nerve growth factor-tyrosine kinase receptor A to promote peptidergic identity in a subset of prospective nociceptors. We provide in vivo evidence that a population of peptidergic neurons, derived from the RUNX1 lineage, require Met activity for the proper extinction of Runx1 and optimal activation of CGRP (calcitonin gene-related peptide). Moreover, we show that RUNX1 in turn represses Met expression in nonpeptidergic neurons, revealing a bidirectional cross talk between Met and RUNX1. Together, our novel findings support a model in which peptidergic versus nonpeptidergic specification depends on a balance between HGF-Met signaling and Runx1 extinction/maintenance.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Factor de Crecimiento de Hepatocito/fisiología , Nociceptores/metabolismo , Proteínas Proto-Oncogénicas c-met/fisiología , Transducción de Señal/fisiología , Animales , Linaje de la Célula/fisiología , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Neuropéptidos/fisiología , Nociceptores/citología , Proteínas Proto-Oncogénicas c-met/deficiencia , Proteínas Proto-Oncogénicas c-met/genética
6.
Stem Cells ; 27(6): 1309-17, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19489096

RESUMEN

Stem/progenitor cell-based therapies hold promises for repairing the damaged nervous system. However, the efficiency of these approaches for neuronal replacement remains very limited. A major challenge is to develop pretransplant cell manipulations that may promote the survival, engraftment, and differentiation of transplanted cells. Here, we investigated whether overexpression of fibroblast growth factor-2 (FGF-2) in grafted neural progenitors could improve their integration in the host tissue. We show that FGF-2-transduced progenitors grafted in the early postnatal rat cortex have the distinct tendency to associate with the vasculature and establish multiple proliferative clusters in the perivascular environment. The contact with vessels appears to be critical for maintaining progenitor cells in an undifferentiated and proliferative phenotype in the intact cortex. Strikingly, perivascular clusters of FGF-2 expressing cells seem to supply immature neurons in an ischemic environment. Our data provide evidence that engineering neural progenitors to overexpress FGF-2 may be a suitable strategy to improve the integration of grafted neural progenitor cells with the host vasculature thereby generating neurovascular clusters with a neurogenic potential for brain repair.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Hipoxia-Isquemia Encefálica/cirugía , Neuronas/metabolismo , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Animales , Vasos Sanguíneos , Diferenciación Celular/fisiología , Factor 2 de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Neuronas/citología , Ratas , Ratas Wistar , Células Madre/citología
7.
Anesthesiology ; 108(4): 684-92, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18362601

RESUMEN

BACKGROUND: An increasing number of clinical observations suggest adverse neurologic outcome after methylene blue (MB) infusion in the setting of parathyroid surgery. Hence, the aim of the current study was to investigate the potentially neurotoxic effects of MB using a combination of in vivo and in vitro experimental approaches. METHODS: Isoflurane-anesthetized adult rats were used to evaluate the impact of a single bolus intravascular administration of MB on systemic hemodynamic responses and on the minimum alveolar concentration (MAC) of isoflurane using the tail clamp test. In vivo, MB-induced cell death was evaluated 24 h after MB administration using Fluoro-Jade B staining and activated caspase-3 immunohistochemistry. In vitro, neurotoxic effects of MB were examined in hippocampal slice cultures by measuring excitatory field potentials as well as propidium iodide incorporation after MB exposure. The impact of MB on dendritic arbor was evaluated in differentiated single cell neuronal cultures. RESULTS: Bolus injections of MB significantly reduced isoflurane MAC and initiated widespread neuronal apoptosis. Electrophysiologic recordings in hippocampal slices revealed a rapid suppression of evoked excitatory field potentials by MB, and this was associated with a dose-dependent effect of this drug on cell death. Dose-response experiments in single cell neuronal cultures revealed that a 2-h-long exposure to MB at non-cell-death-inducing concentrations could still induce significant retraction of dendritic arbor. CONCLUSIONS: These results suggest that MB exerts neurotoxic effects on the central nervous system and raise questions regarding the safety of using this drug at high doses during parathyroid gland surgery.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Azul de Metileno/toxicidad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Sistema Nervioso Central/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
8.
Brain ; 130(Pt 11): 2962-76, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17728358

RESUMEN

Strategies to enhance the capacity of grafted stem/progenitors cells to generate multipotential, proliferative and migrating pools of cells in the postnatal brain could be crucial for structural repair after brain damage. We investigated whether the over-expression of basic fibroblast growth factor 2 (FGF-2) in neural progenitor cells (NPCs) could provide a robust source of migrating NPCs for tissue repair in the rat cerebral cortex. Using live imaging we provide direct evidence that FGF-2 over-expression significantly enhances the migratory capacity of grafted NPCs in complex 3D structures, such as cortical slices. Furthermore, we show that the migratory as well as proliferative properties of FGF-2 over-expressing NPCs are maintained after in vivo transplantation. Importantly, after transplantation into a neonatal ischaemic cortex, FGF-2 over-expressing NPCs efficiently invade the injured cortex and generate an increased pool of immature neurons available for brain repair. Differentiation of progenitor cells into immature neurons was correlated with a gradual down-regulation of the FGF-2 transgene. These results reveal an important role for FGF-2 in regulating NPCs functions when interacting with the host tissue and offer a potential strategy to generate a robust source of migrating and immature progenitors for repairing a neonatal ischaemic cortex.


Asunto(s)
Corteza Cerebral/lesiones , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas , Animales , Animales Recién Nacidos , Movimiento Celular , Proliferación Celular , Corteza Cerebral/química , Corteza Cerebral/patología , Factor 2 de Crecimiento de Fibroblastos/análisis , Factor 2 de Crecimiento de Fibroblastos/genética , Expresión Génica , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , VIH-1/genética , Humanos , Hipoxia-Isquemia Encefálica/cirugía , Inmunohistoquímica , Microscopía Fluorescente , Modelos Animales , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre/métodos , Células Madre/patología , Transducción Genética/métodos , Transgenes
9.
Brain Res Rev ; 56(1): 101-18, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17658613

RESUMEN

Isoforms of the neuronal cell adhesion molecule (NCAM) carrying the linear homopolymer of alpha 2,8-linked sialic acid (polysialic acid, PSA) have emerged as particularly attractive candidates for promoting plasticity in the nervous system. The large negatively charged PSA chain of NCAM is postulated to be a spacer that reduces adhesion forces between cells allowing dynamic changes in membrane contacts. Accumulating evidence also suggests that PSA-NCAM-mediated interactions lead to activation of intracellular signaling cascades that are fundamental to the biological functions of the molecule. An important role of PSA-NCAM appears to be during development, when its expression level is high and where it contributes to the regulation of cell shape, growth or migration. However, PSA-NCAM does persist in adult brain structures such as the hippocampus that display a high degree of plasticity where it is involved in activity-induced synaptic plasticity. Recent advances in the field of PSA-NCAM research have not only consolidated the importance of this molecule in plasticity processes but also suggest a role for PSA-NCAM in the regulation of higher cognitive functions and psychiatric disorders. In this review, we discuss the role and mode of actions of PSA-NCAM in structural plasticity as well as its potential link to cognitive processes.


Asunto(s)
Encéfalo/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Ácidos Siálicos/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/ultraestructura , Adhesión Celular/fisiología , Membrana Celular/metabolismo , Cognición/fisiología , Humanos , Vías Nerviosas/ultraestructura , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
10.
Development ; 134(6): 1181-90, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17301083

RESUMEN

In the mammalian brain, ongoing neurogenesis via the rostral migratory stream (RMS) maintains neuronal replacement in the olfactory bulb throughout life. Mechanisms that regulate the final number of new neurons in this system include proliferation, migration and apoptosis. Here we show that the polysialylated isoforms of the neural cell adhesion molecule (PSA-NCAM) act as a pro-survival molecule in immature newborn neurons. Confocal microscopic analysis revealed a threefold increase in TUNEL-positive cells in the subventricular zone (SVZ) and the RMS of transgenic animals lacking the gene encoding NCAM (NCAM(-/-)), as compared with wild types. The enhanced apoptotic cell death occurred specifically in the population of mCD24-positive newborn neurons, but not in GFAP-positive astrocytes. Using in vitro cultures of purified SVZ-derived neurons, we demonstrate that the loss or inactivation of PSA on NCAM, as well as the deletion of NCAM, lead to reduced survival in response to neurotrophins including BDNF and NGF. These changes in cell survival are accompanied by an upregulation of p75 neurotrophin receptor expression in vitro as well as in vivo. Furthermore, the negative effects of PSA-NCAM inactivation on cell survival could be prevented by the pharmacological blockade of the p75 receptor-signaling pathway. We propose that PSA-NCAM may promote survival by controlling the expression of the p75 receptor in developing neurons.


Asunto(s)
Apoptosis/genética , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Ácidos Siálicos/fisiología , Animales , Supervivencia Celular/genética , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/farmacología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso/genética , Ácidos Siálicos/genética
11.
Neurochem Res ; 31(2): 215-25, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16572258

RESUMEN

A characteristic feature of neurogenic sites in the postnatal brain is the expression of the polysialylated forms of the neural cell adhesion molecule (PSA-NCAM). To investigate the role of PSA-NCAM in generation of neuronal populations, we developed an in vitro model where neurogenesis occurs in primary cortical cultures following serum withdrawal. We show that removal or inactivation of the PSA tail of NCAM in these cultures leads to a significant decrease in the number of newly generated neurons. Similarly, cultures prepared from NCAM knock-out mice exhibit a significantly reduced neurogenesis. Pulse-chase experiments using the proliferation marker BrdU reveal that the lack of PSA does not affect the mitotic rate of neural progenitors but rather, it reduces the early survival of newly generated neurons. These results suggest that, in addition to its role in the migration of neuronal progenitors, PSA-NCAM is required for the adequate survival of these cells.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuronas/citología , Ácidos Siálicos/metabolismo , Animales , Animales Recién Nacidos , Supervivencia Celular , Células Cultivadas , Medio de Cultivo Libre de Suero , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA