Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Viruses ; 16(9)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39339951

RESUMEN

Baculoviral vectors (BVs) derived from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) are an attractive tool for multigene delivery in mammalian cells, which is particularly relevant for CRISPR technologies. Most applications in mammalian cells rely on BVs that are pseudotyped with vesicular stomatitis virus G-protein (VSV-G) to promote efficient endosomal release. VSV-G expression typically occurs under the control of the hyperactive polH promoter. In this study, we demonstrate that polH-driven VSV-G expression results in BVs characterised by reduced stability, impaired morphology, and VSV-G induced toxicity at high multiplicities of transduction (MOTs) in target mammalian cells. To overcome these drawbacks, we explored five alternative viral promoters with the aim of optimising VSV-G levels displayed on the pseudotyped BVs. We report that Orf-13 and Orf-81 promoters reduce VSV-G expression to less than 5% of polH, rescuing BV morphology and stability. In a panel of human cell lines, we elucidate that BVs with reduced VSV-G support efficient gene delivery and CRISPR-mediated gene editing, at levels comparable to those obtained previously with polH VSV-G-pseudotyped BVs (polH VSV-G BV). These results demonstrate that VSV-G hyperexpression is not required for efficient transduction of mammalian cells. By contrast, reduced VSV-G expression confers similar transduction dynamics while substantially improving BV integrity, structure, and stability.


Asunto(s)
Vectores Genéticos , Nucleopoliedrovirus , Regiones Promotoras Genéticas , Transducción Genética , Proteínas del Envoltorio Viral , Humanos , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/fisiología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Vectores Genéticos/genética , Animales , Línea Celular , Baculoviridae/genética , Edición Génica/métodos , Células HEK293 , Sistemas CRISPR-Cas , Glicoproteínas de Membrana
2.
Gene ; 926: 148637, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38844270

RESUMEN

The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.


Asunto(s)
Chaperonina con TCP-1 , Leishmania donovani , Proteínas Protozoarias , Leishmania donovani/genética , Leishmania donovani/metabolismo , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Clonación Molecular , Secuencia de Aminoácidos , Chaperoninas/metabolismo , Chaperoninas/genética , Pliegue de Proteína
3.
Structure ; 32(3): 342-351.e6, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38198950

RESUMEN

Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.


Asunto(s)
Ingeniería de Proteínas , Sitios de Unión
4.
PLoS Pathog ; 15(2): e1007573, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779788

RESUMEN

Motility and phagocytosis are key processes that are involved in invasive amoebiasis disease caused by intestinal parasite Entamoeba histolytica. Previous studies have reported unconventional myosins to play significant role in membrane based motility as well as endocytic processes. EhMyosin IB is the only unconventional myosin present in E. histolytica, is thought to be involved in both of these processes. Here, we report an interaction between the SH3 domain of EhMyosin IB and c-terminal domain of EhFP10, a Rho guanine nucleotide exchange factor. EhFP10 was found to be confined to Entamoeba species only, and to contain a c-terminal domain that binds and bundles actin filaments. EhFP10 was observed to localize in the membrane ruffles, phagocytic and macropinocytic cups of E. histolytica trophozoites. It was also found in early pinosomes but not early phagosomes. A crystal structure of the c-terminal SH3 domain of EhMyosin IB (EhMySH3) in complex with an EhFP10 peptide and co-localization studies established the interaction of EhMySH3 with EhFP10. This interaction was shown to lead to inhibition of actin bundling activity and to thereby regulate actin dynamics during endocytosis. We hypothesize that unique domain architecture of EhFP10 might be compensating the absence of Wasp and related proteins in Entamoeba, which are known partners of myosin SH3 domains in other eukaryotes. Our findings also highlights the role of actin bundling during endocytosis.


Asunto(s)
Entamoeba histolytica/metabolismo , Miosina Tipo I/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Actinas , Movimiento Celular , Citoesqueleto/inmunología , Endocitosis/fisiología , Entamoeba histolytica/patogenicidad , Entamebiasis/inmunología , Entamebiasis/metabolismo , Miosinas , Fagocitosis , Fagosomas , Unión Proteica , Dominios Proteicos , Factores de Intercambio de Guanina Nucleótido Rho/fisiología
5.
Acta Crystallogr D Struct Biol ; 73(Pt 8): 672-682, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28777082

RESUMEN

The versatility in the recognition of various interacting proteins by the SH3 domain drives a variety of cellular functions. Here, the crystal structure of the C-terminal SH3 domain of myosin IB from Entamoeba histolytica (EhMySH3) is reported at a resolution of 1.7 Šin native and PEG-bound states. Comparisons with other structures indicated that the PEG molecules occupy protein-protein interaction pockets similar to those occupied by the peptides in other peptide-bound SH3-domain structures. Also, analysis of the PEG-bound EhMySH3 structure led to the recognition of two additional pockets, apart from the conventional polyproline and specificity pockets, that are important for ligand interaction. Molecular-docking studies combined with various comparisons revealed structural similarity between EhMySH3 and the SH3 domain of ß-Pix, and this similarity led to the prediction that EhMySH3 preferentially binds targets containing type II-like PXXP motifs. These studies expand the understanding of the EhMySH3 domain and provide extensive structural knowledge, which is expected to help in predicting the interacting partners which function together with myosin IB during phagocytosis in E. histolytica infections.


Asunto(s)
Entamoeba histolytica/metabolismo , Miosina Tipo I/metabolismo , Polietilenglicoles/metabolismo , Proteínas Protozoarias/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Cristalografía por Rayos X , Entamoeba histolytica/química , Entamebiasis/parasitología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Miosina Tipo I/química , Polietilenglicoles/química , Unión Proteica , Multimerización de Proteína , Proteínas Protozoarias/química , Alineación de Secuencia
6.
FEBS Lett ; 591(15): 2311-2322, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28656718

RESUMEN

The ß-clamp is the processivity-promoting factor for most of the enzymes in prokaryotic DNA replication; hence, it is a crucial drug target. In the present study, we investigated the ß-clamp from Helicobacter pylori, aiming to seek potential drug molecules against this gastric-cancer-causing bacterium. An in silico screening of Food and Drug Administration (FDA) approved drugs against the H. pylori ß-clamp, followed by its in vitro inhibition using a surface competition approach, yielded the drug diflunisal as a positive initial hit. Diflunisal inhibits the growth of H. pylori in the micromolar range. We determined the structure of diflunisal in complex with the ß-clamp to show that the drug binds at subsite I, which is a protein-protein interaction site. Successful identification of FDA-approved molecules against H. pylori may lead to better and faster drug development.


Asunto(s)
Antibacterianos/farmacología , ADN Polimerasa III/antagonistas & inhibidores , ADN Polimerasa III/química , Diflunisal/farmacología , Helicobacter pylori/efectos de los fármacos , Antibacterianos/química , Sitios de Unión , Cristalografía por Rayos X , ADN Ligasas/metabolismo , ADN Polimerasa III/metabolismo , Diflunisal/química , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/enzimología , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA