Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
IEEE Robot Autom Lett ; 9(2): 1166-1173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38292408

RESUMEN

Head and neck cancers are the seventh most common cancers worldwide, with squamous cell carcinoma being the most prevalent histologic subtype. Surgical resection is a primary treatment modality for many patients with head and neck squamous cell carcinoma, and accurately identifying tumor boundaries and ensuring sufficient resection margins are critical for optimizing oncologic outcomes. This study presents an innovative autonomous system for tumor resection (ASTR) and conducts a feasibility study by performing supervised autonomous midline partial glossectomy for pseudotumor with millimeter accuracy. The proposed ASTR system consists of a dual-camera vision system, an electrosurgical instrument, a newly developed vacuum grasping instrument, two 6-DOF manipulators, and a novel autonomous control system. The letter introduces an ontology-based research framework for creating and implementing a complex autonomous surgical workflow, using the glossectomy as a case study. Porcine tongue tissues are used in this study, and marked using color inks and near-infrared fluorescent (NIRF) markers to indicate the pseudotumor. ASTR actively monitors the NIRF markers and gathers spatial and color data from the samples, enabling planning and execution of robot trajectories in accordance with the proposed glossectomy workflow. The system successfully performs six consecutive supervised autonomous pseudotumor resections on porcine specimens. The average surface and depth resection errors measure 0.73±0.60 mm and 1.89±0.54 mm, respectively, with no positive tumor margins detected in any of the six resections. The resection accuracy is demonstrated to be on par with manual pseudotumor glossectomy performed by an experienced otolaryngologist.

2.
Front Endocrinol (Lausanne) ; 14: 1076640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843593

RESUMEN

Background: BRAF mutation is one of the most common genetic alterations contributing to the initiation and progression of papillary thyroid carcinoma (PTC). However, the prognostic value of BRAF mutation for PTC is limited. Novel markers are needed to identify BRAF-mutant patients with poor prognosis. Methods: Transcriptional expression data were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Pathway enrichment was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA). Protein-protein interaction networks were predicted by the GeneMANIA. The correlation between STRA6 expression and immune infiltration was analyzed by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Immunohistochemistry was used to detect the STRA6 protein expression level of PTC. Infiltration of regulatory T cells (Tregs) and CD8+ T cells in tumor samples were analyzed by fluorescent multiplex immunohistochemistry. Results: In BRAF-mutant PTC, STRA6 was extremely upregulated and predicted unfavorable survival, which was an independent risk factor for increased mortality risk. Bioinformatic analyses indicated that STRA6 might activate the MAPK pathway synergistically with BRAFV600E. The expression of STRA6 was associated with immune infiltrates and T cell exhaustion. Fluorescent multiplex immunohistochemistry showed that STRA6 increased Tregs abundance and decreased CD8+ T cells infiltration in PTC. Moreover, STRA6 promoted epithelial-mesenchymal transition via increased cancer-associated fibroblasts infiltration. Conclusions: Our study demonstrates STRA6 may serve as a prognostic marker for BRAF-mutated PTC, which may drive thyroid carcinogenesis via activation of oncogenic pathway and regulation of tumor immunosuppressive microenvironment.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/patología , Proteínas Proto-Oncogénicas B-raf/genética , Pronóstico , Carcinoma Papilar/patología , Microambiente Tumoral/genética , Proteínas de la Membrana/genética
3.
Adv Intell Syst ; 4(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35967598

RESUMEN

The field of magnetic robotics aims to obviate physical connections between the actuators and end-effectors. Such tetherless control may enable new ultra-minimally invasive surgical manipulations in clinical settings. While wireless actuation offers advantages in medical applications, the challenge of providing sufficient force to magnetic needles for tissue penetration remains a barrier to practical application. Applying sufficient force for tissue penetration is required for tasks such as biopsy, suturing, cutting, drug delivery, and accessing deep seated regions of complex structures in organs such as the eye. To expand the force landscape for such magnetic surgical tools, an impact-force based suture needle capable of penetrating in vitro and ex vivo samples with 3-DOF planar motion is proposed. Using custom-built 14G and 25G needles, we demonstrate generation of 410 mN penetration force, a 22.7-fold force increase with more than 20 times smaller volume compared to similar magnetically guided needles. With the MPACT-Needle, in vitro suturing of a gauze mesh onto an agar gel is demonstrated. In addition, we have reduced the tip size to 25G, which is a typical needle size for interventions in the eye, to demonstrate ex vivo penetration in a rabbit eye, mimicking procedures such as corneal injections and transscleral drug delivery.

4.
Nanotechnology ; 32(15): 155503, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33395679

RESUMEN

Various gas sensors have made considerable improvements to the quality of people's lives. However, in most cases, changing of materials is necessary to adapt to the changing of the target gas, which limits the further application of gas sensors. To meet this challenge, in this work, molecular imprinting (MI) technology is introduced. Acrylic acid is used as a functional monomer, while gas molecules, including acetone, are used as templates. The MI process with an acetone template helps improve the acetone selectivity of TiO2 by up to 1.74-2.80 times. Moreover, it proved that other templates can increase the corresponding selectivity by at least 1.5 times by using the same matrix material. These results demonstrate the potential importance of the MI process in constructing a highly compatible gas sensor industry. Beyond this, the MI process has proved to achieve an ultrahigh specific surface area of 384.36 m2 · g-1. The optimal acetone sensor exhibits desirable comprehensive performance compared with other reports. An excellent TiO2 based prototype acetone sensor working at 300 °C with a low detection limit of 18 ppb is obtained.

5.
IEEE Trans Med Robot Bionics ; 3(3): 762-772, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36970042

RESUMEN

This paper presents a dual-arm suturing robot. We extend the Smart Tissue Autonomous Robot (STAR) with a second robot manipulator, whose purpose is to manage loose suture thread, a task that was previously executed by a human assistant. We also introduce novel near-infrared fluorescent (NIRF) sutures that are automatically segmented and delimit the boundaries of the suturing task. During ex-vivo experiments of porcine models, our results demonstrate that this new system is capable of outperforming human surgeons in all but one metric for the task of vaginal cuff closure (porcine model) and is more consistent in every aspect of the task. We also present results to demonstrate that the system can perform a vaginal cuff closure during an in-vivo experiment (porcine model).

6.
Artículo en Inglés | MEDLINE | ID: mdl-38533465

RESUMEN

Surgical resection is the current clinical standard of care for treating squamous cell carcinoma. Maintaining an adequate tumor resection margin is the key to a good surgical outcome, but tumor edge delineation errors are inevitable with manual surgery due to difficulty in visualization and hand-eye coordination. Surgical automation is a growing field of robotics to relieve surgeon burdens and to achieve a consistent and potentially better surgical outcome. This paper reports a novel robotic supervised autonomous electrosurgery technique for soft tissue resection achieving millimeter accuracy. The tumor resection procedure is decomposed to the subtask level for a more direct understanding and automation. A 4-DOF suction system is developed, and integrated with a 6-DOF electrocautery robot to perform resection experiments. A novel near-infrared fluorescent marker is manually dispensed on cadaver samples to define a pseudotumor, and intraoperatively tracked using a dual-camera system. The autonomous dual-robot resection cooperation workflow is proposed and evaluated in this study. The integrated system achieves autonomous localization of the pseudotumor by tracking the near-infrared marker, and performs supervised autonomous resection in cadaver porcine tongues (N=3). The three pseudotumors were successfully removed from porcine samples. The evaluated average surface and depth resection errors are 1.19 and 1.83mm, respectively. This work is an essential step towards autonomous tumor resections.

7.
Med Image Comput Comput Assist Interv ; 11764: 320-328, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33511379

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common cancer in the head and neck region, and is associated with high morbidity and mortality rates. Surgical resection is usually the primary treatment strategy for OSCC, and maintaining effective tumor resection margins is paramount to surgical outcomes. In practice, wide tumor excisions impair post-surgical organ function, while narrow resection margins are associated with tumor recurrence. Identification and tracking of these resection margins remain a challenge because they migrate and shrink from preoperative chemo or radiation therapies, and deform intra-operatively. This paper reports a novel near-infrared (NIR) fluorescent marking and landmark-based deformable image registration (DIR) method to precisely predict deformed margins. The accuracy of DIR predicted resection margins on porcine cadaver tongues is compared with rigid image registration and surgeon's manual prediction. Furthermore, our tracking and registration technique is integrated into a robotic system, and tested using ex vivo porcine cadaver tongues to demonstrate the feasibility of supervised autonomous tumor bed resections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA