Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytomedicine ; 132: 155430, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047413

RESUMEN

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children, adolescents, and young adults, followed by the elderly, with a high propensity for local invasion and metastasis. Although surgery combined with chemotherapy has greatly improved the prognosis of patients with OS, the prognosis for metastatic or recurrent OS is still unsatisfactory. The research community has struggled to develop an effective chemotherapy treatment regimen for this tumor. For the creation of an OS drug, our research team has effectively developed and manufactured a new drug named 9-O-monoethyl succinate berberine (B2). PURPOSE: In this study, we aimed to investigate the roles and functions of B2 in the treatment of OS. METHODS: Human OS cell lines and mouse OS cell lines were used in vitro cell experiments, while BALB/c mice and BALB/c nude mice were used in vivo animal experiments. To investigate the molecular mechanism of B2 treatment, antibody microarray analysis, proteomic analysis, quantitative real-time PCR, immunohistochemical labeling, and western blotting analysis were mostly carried out. We assessed the impact of B2 on OS therapy and the underlying molecular pathways based on in vivo and in vitro studies. RESULTS: Our findings demonstrated that B2 has the ability to inhibit the proliferation, migration, and invasion of OS cell lines, while also induce apoptosis in vitro. Additionally, our results suggested that B2 could effectively impede the growth of OS and has less heart and lung damage than cisplatin in vivo. In terms of mechanism, we discovered that the Wnt5a protein is significantly expressed in OS cell lines. Knockdown of Wnt5a can restrict OS cell lines proliferation, and overexpression of Wnt5a had the opposite results. B2 also had a strong affinity with Wnt5a and can inhibit the PI3K/AKT signaling pathway by targeting Wnt5a. Tumor cells proliferation can be inhibited by blocking the PI3K/AKT signaling pathway, and Wnt5a-mediated inactivation of the PI3K/AKT signaling pathway after B2 treatment. In vitro and in vivo experiments with Wnt5a overexpression, B2 significantly inhibited tumor growth, migration, and invasion. Moreover, B2 and Wnt5a also have a strong structural binding ability (binding energy of -7.567 ± 0.084 kcal/mol, binding values of 2.860 ± 0.434 µM), and three hydrogen bonds are generated at the docking positions of amino acids GLN286, ASN288, and ASN292. CONCLUSION: In summary, our study confirmed for the first time that the growth of OS is related to abnormal overexpression of Wnt5a protein, and designed a novel small molecule inhibitor named B2 targeting Wnt5a protein, which inhibits OS growth by mediating PI3K/AKT signaling pathway by targeting Wnt5a protein. Our research laid the groundwork for the promotion of B2 as a new anticancer drug and revealed an innovative chemotherapeutic strategy for OS therapy.


Asunto(s)
Berberina , Ratones Endogámicos BALB C , Ratones Desnudos , Osteosarcoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proteína Wnt-5a , Animales , Proteína Wnt-5a/metabolismo , Humanos , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Berberina/farmacología , Berberina/análogos & derivados , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Antineoplásicos Fitogénicos/farmacología
2.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233839

RESUMEN

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Asunto(s)
Citidina/análogos & derivados , Osteosarcoma , Fosfofructoquinasas , Humanos , Lactato Deshidrogenasa 5/metabolismo , Fosfofructoquinasas/metabolismo , Acetilación , ARN/metabolismo , Glucólisis/genética , Osteosarcoma/patología , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acetiltransferasas N-Terminal/metabolismo
3.
Toxicol Appl Pharmacol ; 482: 116798, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160894

RESUMEN

Osteosarcoma (OS) is a common malignant tumor disease in the department of orthopedics, which is prone to the age of adolescents and children under 20 years old. Arsenic trioxide (ATO), an ancient poison, has been reported to play a critical role in a variety of tumor treatments, including OS. However, due to certain poisonous side effects such as cardiotoxicity and hepatotoxicity, clinical application of ATO has been greatly limited. Here we report that low doses of ATO (1 µM) observably reduced the half-effective inhibitory concentration (IC50) of vitamin C on OS cells. Compared with the treatment alone, the synthetic application of vitamin C (VitC, 800 µM) and ATO (1 µM) significantly further inhibited the proliferation, migration, and invasion of OS cells and promoted cell apoptosis in vitro. Meanwhile, we observed that the combined application of VitC and ATO directly suppresses the aerobic glycolysis of OS cells with the decreased production of pyruvate, lactate, and ATP via inhibiting the expression of the critical glycolytic genes (PGK1, PGM1, and LDHA). Moreover, the combination of VitC (200 mg/kg) and ATO (1 mg/kg) with tail vein injection significantly delayed OS growth and migration of nude mice by inhibiting aerobic glycolysis of OS. Thus, our results demonstrate that VitC effectively increases the sensitivity of OS to low concentrations of ATO via inhibiting aerobic glycolysis to alleviate the toxic side effects of high doses of arsenic trioxide, suggesting that synthetic application of VitC and ATO is a promising approach for the clinical treatment of human OS.


Asunto(s)
Arsenicales , Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Niño , Humanos , Adolescente , Adulto Joven , Adulto , Trióxido de Arsénico/farmacología , Ácido Ascórbico/farmacología , Ratones Desnudos , Óxidos/toxicidad , Arsenicales/farmacología , Apoptosis , Osteosarcoma/tratamiento farmacológico , Vitaminas/farmacología , Neoplasias Óseas/tratamiento farmacológico , Glucólisis , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA