Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 222: 113102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584450

RESUMEN

Physical exercise has long been considered an essential regulator of bone formation. Recent studies have shown that brain-derived neurotrophic factor (BDNF) is an important cytokine released during physical exercise to promote osteogenic differentiation and facilitate the bone defect healing process. In this study, we developed a multifunctional system 7,8-DHF@ZIF-8, which combines the superior osteogenesis and angiogenesis properties of ZIF-8 and the unique capability of 7,8-DHF to mimic the function of BDNF to compensate for the routine physical exercise missed during the bone defect period. Various material characterizations were performed to confirm the successful synthesis of 7,8-DHF@ZIF-8. Drug release experiments suggested that 7,8-DHF@ZIF-8 could achieve slow diffusive release under physiological conditions within seven days. In vitro cell experiments indicated that low concentrations of ZIF-8 and 7,8-DHF@ZIF-8 could significantly promote the proliferation of MC3T3-E1 cells. Moreover, as proved by RT-QPCR analysis, incorporating 7,8-DHF into ZIF-8 could further enhance osteogenesis and angiogenesis-related gene expression. Therefore, we believe that the multifunctional drug system 7,8-DHF@ZIF-8 should have promising applications to facilitate bone defect healing.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Osteogénesis , Osteogénesis/genética , Citocinas , Diferenciación Celular
2.
Adv Healthc Mater ; 11(13): e2200398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35481900

RESUMEN

Besides inducing osteogenic differentiation, the surface modification of poly(ether ether ketone) (PEEK) is highly expected to improve its angiogenic activity and reduce the inflammatory response in the surrounding tissue. Herein, strontium chondroitin sulfate is first attempted to be introduced into the surface of sulfonated PEEK (SPEEK-CS@Sr) based on the Schiff base reaction between PEEK and ethylenediamine (EDA) and the amidation reaction between EDA and chondroitin sulfate (CS). The surface characteristics of SPEEK-CS@Sr implant are systematically investigated, and its biological properties in vitro and in vivo are also evaluated. The results show that the surface of SPEEK-CS@Sr implant exhibits a 3D microporous structure and good hydrophilicity, and can steadily release Sr ions. Importantly, the SPEEK-CS@Sr not only displays excellent biocompatibility, but also can remarkably promote cell adhesion and spread, improve osteogenic activity and angiogenic activity, and reduce the inflammatory response compared to the original PEEK. Therefore, this study presents the surface modification of PEEK material by simple chemical grafting of strontium chondroitin sulfate to improve its angiogenesis, anti-inflammation, and osteogenic properties, and the as-fabricated SPEEK-CS@Sr has the potential to serve as a promising orthopedic implant in bone tissue engineering.


Asunto(s)
Cetonas , Osteogénesis , Benzofenonas , Sulfatos de Condroitina/farmacología , Éter , Éteres , Cetonas/química , Cetonas/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polímeros/química , Polímeros/farmacología , Estroncio/química , Estroncio/farmacología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA