Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Protein Sci ; 33(2): e4860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149326

RESUMEN

Cystathionine- ß $$ \beta $$ -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg2+ ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg2+ transport.


Asunto(s)
Proteínas de Transporte de Catión , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Dimerización , Magnesio/química , Mutación , Proteínas de Transporte de Membrana , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética , Proteínas de Transporte de Catión/química
2.
Elife ; 122023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449820

RESUMEN

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Canales Catiónicos TRPM , Cationes Bivalentes , Canales Catiónicos TRPM/genética , Unión Proteica , Transporte Biológico
3.
FEBS J ; 290(23): 5475-5495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37222397

RESUMEN

Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-ß-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.


Asunto(s)
Neoplasias , Animales , Humanos , Unión Proteica , Dominios Proteicos , Secuencia de Aminoácidos , Neoplasias/metabolismo , Cistationina betasintasa/metabolismo , Cationes , Mamíferos/metabolismo
4.
J Biol Chem ; 299(4): 103055, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822330

RESUMEN

Phosphatases of regenerating liver (PRL or PTP4A) are a family of enigmatic protein phosphatases implicated in cell growth and metabolism. Despite their relevance in metastatic cancer, much remains unknown about the PRL family. They act as pseudophosphatases to regulate the CNNM family of magnesium transporters yet also have enzymatic activity on unknown substrates. In mammals, PRLs are mostly found trapped in an intermediate state that regulates their pseudophosphatase activity. Phosphocysteine, which is formed as an intermediate in the phosphatase catalytic cycle, is inefficiently hydrolyzed leading to burst enzyme kinetics and turnover numbers of less than one per hour. In flies, PRLs have recently been shown to have neuroprotective and neurodevelopmental roles raising the question whether they act as phosphatases, pseudophosphatases, or both. Here, we characterize the evolutionary development of PRLs and ask whether their unique structural and functional properties are conserved. We purified recombinant PRL proteins from 15 phylogenetically diverse organisms and characterized their catalytic activities and ability to bind CNNM proteins. We observed PRLs from humans to amoebae form a stable phosphocysteine intermediate and exhibit burst kinetics. Isothermal titration calorimetry experiments confirmed that the PRL-CNNM interaction is broadly conserved with nanomolar affinity in vertebrates. Lastly, we determined the crystal structure of the Drosophila melanogaster PRL-CNNM complex and identified mutants that specifically impair either phosphatase activity or CNNM binding. Our results reveal the unique properties of PRLs are conserved throughout the animal kingdom and open the door to using model organisms to dissect PRL function in cell signaling.


Asunto(s)
Drosophila melanogaster , Proteínas Tirosina Fosfatasas , Animales , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Cinética , Drosophila melanogaster/metabolismo , Transducción de Señal , Hígado/metabolismo , Mamíferos/metabolismo
5.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711628

RESUMEN

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg 2+ ions on their own or uptake of divalent cations when coupled to the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP-binding protein and demonstrate that it binds the CNNM CBS-pair domain with low micromolar affinity. The crystal structure of the complex between ARL15 GTPase domain and CNNM2 CBS-pair domain reveals the molecular determinants of the interaction and allowed the identification of mutations in ARL15 and CNNM2 mutations that abrogate binding. Loss of CNNM binding prevented ARL15 suppression of TRPM7 channel activity in support of previous reports that the proteins function as a ternary complex. Binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) revealed that ARL15 and PRLs compete for binding CNNM, suggesting antagonistic regulation of divalent cation transport by the two proteins.

6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217622

RESUMEN

The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation in mitosis by preventing the onset of anaphase until correct bipolar attachment of sister chromosomes to the mitotic spindle is attained. It acts by promoting the assembly of a mitotic checkpoint complex (MCC), composed of mitotic checkpoint proteins BubR1, Bub3, Mad2, and Cdc20. MCC binds to and inhibits the action of ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), which targets for degradation regulators of anaphase initiation. When the checkpoint system is satisfied, MCCs are disassembled, allowing the recovery of APC/C activity and initiation of anaphase. Many of the pathways of the disassembly of the different MCCs have been elucidated, but the mode of their regulation remained unknown. We find that UBR5 (ubiquitin-protein ligase N-recognin 5) is associated with the APC/C*MCC complex immunopurified from extracts of nocodazole-arrested HeLa cells. UBR5 binds to mitotic checkpoint proteins BubR1, Bub3, and Cdc20 and promotes their polyubiquitylation in vitro. The dissociation of a Bub3*BubR1 subcomplex of MCC is stimulated by UBR5-dependent ubiquitylation, as suggested by observations that this process in mitotic extracts requires UBR5 and α-ß bond hydrolysis of adenosine triphosphate. Furthermore, a system reconstituted from purified recombinant components carries out UBR5- and ubiquitylation-dependent dissociation of Bub3*BubR1. Immunodepletion of UBR5 from mitotic extracts slows down the release of MCC components from APC/C and prolongs the lag period in the recovery of APC/C activity in the exit from mitotic checkpoint arrest. We suggest that UBR5 may be involved in the regulation of the inactivation of the mitotic checkpoint.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Ubiquitinación
7.
J Biol Chem ; 298(1): 101471, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890645

RESUMEN

Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate-enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.


Asunto(s)
Hígado , Proteínas Tirosina Fosfatasas , Animales , Catálisis , Humanos , Hígado/enzimología , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo
9.
Br J Cancer ; 124(6): 1035-1036, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33268817

RESUMEN

Phosphatases of regenerating liver (PRL1-3) are among the most oncogenic protein phosphatases but their mechanism of action is poorly understood. Multiple substrates have been proposed as well as a non-catalytic function regulating magnesium transport. Our recent identification of a catalytically inactive PRL mutant that retains oncogenicity in a mouse model promises to resolve the question of whether PRLs act as phosphatases or pseudo-phosphatases in different cancer models.


Asunto(s)
Proteínas Oncogénicas , Proteínas Tirosina Fosfatasas , Animales , Ratones
10.
J Biol Chem ; 295(33): 11682-11692, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571875

RESUMEN

Phosphatases of regenerating liver (PRLs) are markers of cancer and promote tumor growth. They have been implicated in a variety of biochemical pathways but the physiologically relevant target of phosphatase activity has eluded 20 years of investigation. Here, we show that PRL3 catalytic activity is not required in a mouse model of metastasis. PRL3 binds and inhibits CNNM4, a membrane protein associated with magnesium transport. Analysis of PRL3 mutants specifically defective in either CNNM-binding or phosphatase activity demonstrate that CNNM binding is necessary and sufficient to promote tumor metastasis. As PRLs do have phosphatase activity, they are in fact pseudo-pseudophosphatases. Phosphatase activity leads to formation of phosphocysteine, which blocks CNNM binding and may play a regulatory role. We show levels of PRL cysteine phosphorylation vary in response to culture conditions and in different tissues. Examination of related protein phosphatases shows the stability of phosphocysteine is a unique and evolutionarily conserved property of PRLs. The demonstration that PRL3 functions as a pseudophosphatase has important ramifications for the design of PRL inhibitors for cancer.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Células COS , Carcinogénesis/genética , Carcinogénesis/patología , Chlorocebus aethiops , Femenino , Células HEK293 , Células HeLa , Humanos , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/genética , Magnesio/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética
11.
Structure ; 28(3): 324-335.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31864811

RESUMEN

The family of cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) is composed of four integral membrane proteins associated with Mg2+ transport. Structurally, CNNMs contain large cytosolic regions composed of a CBS-pair and a cyclic nucleotide-binding homology (CNBH) domain. How these regulate Mg2+ transport activity is unknown. Here, we determined the crystal structures of cytosolic fragments in two conformations: Mg2+-ATP-analog bound and ligand free. The structures reveal open and closed conformations with functionally important contacts not observed in structures of the individual domains. We also identified a second Mg2+-binding region in the CBS-pair domain and a different dimerization interface for the CNBH domain. Analytical ultracentrifugation and isothermal titration calorimetry experiments revealed a tight correlation between Mg2+-ATP binding and protein dimerization. Mutations that blocked either function prevented cellular Mg2+ efflux activity. The results suggest Mg2+ efflux is regulated by conformational changes associated with Mg2+-ATP binding to CNNM CBS-pair domains.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/genética , Cristalografía por Rayos X , Citosol/metabolismo , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
12.
Medchemcomm ; 10(5): 791-799, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31191869

RESUMEN

Thienopyridone (TP) has been proposed as a selective inhibitor of phosphatases of regenerating liver (PRL or PTP4A). PRLs are dual specificity phosphatases that promote cancer progression and are attractive anticancer targets. TP and iminothienopyridinedione (ITP), a more potent derivative, were shown to be effective inhibitors but the mechanism of inhibition was not established. Here, we perform NMR experiments and in vitro phosphatase assays to show that TP and ITP inhibit protein phosphatases non-specifically through oxidation of the phosphatase catalytic cysteine. We demonstrate that TP and ITP are redox active compounds, inhibiting PRL-3 and multiple other PTPs through oxidation. They also catalyze the oxidation of thioredoxin-1 as well as small molecules, like TCEP, DTT, and glutathione. The reported selectivity of TP and ITP is likely due to the higher susceptibility of PRLs to oxidation. Thus, while TP and ITP effectively inhibit PRLs, their use for studying the cellular function of PRLs is problematic due to the likelihood of off-target effects.

13.
Nat Chem Biol ; 14(12): 1079-1089, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429604

RESUMEN

CD95L is a transmembrane ligand (m-CD95L) that is cleaved by metalloproteases to release a soluble ligand (s-CD95L). Unlike m-CD95L, interaction between s-CD95L and CD95 fails to recruit caspase-8 and FADD to trigger apoptosis and instead induces a Ca2+ response via docking of PLCγ1 to the calcium-inducing domain (CID) within CD95. This signaling pathway induces accumulation of inflammatory Th17 cells in damaged organs of lupus patients, thereby aggravating disease pathology. A large-scale screen revealed that the HIV protease inhibitor ritonavir is a potent disruptor of the CD95-PLCγ1 interaction. A structure-activity relationship approach highlighted that ritonavir is a peptidomimetic that shares structural characteristics with CID with respect to docking to PLCγ1. Thus, we synthesized CID peptidomimetics abrogating both the CD95-driven Ca2+ response and transmigration of Th17 cells. Injection of ritonavir and the CID peptidomimetic into lupus mice alleviated clinical symptoms, opening a new avenue for the generation of drugs for lupus patients.


Asunto(s)
Inflamación/prevención & control , Peptidomiméticos/farmacología , Fosfolipasa C gamma/metabolismo , Células Th17/efectos de los fármacos , Receptor fas/metabolismo , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/etiología , Masculino , Ratones Mutantes , Simulación del Acoplamiento Molecular , Peptidomiméticos/química , Fosfolipasa C gamma/genética , Dominios Proteicos , Ritonavir/química , Ritonavir/farmacología , Relación Estructura-Actividad , Células Th17/metabolismo , Células Th17/patología , Tiazoles/química , Tiazoles/farmacología , Receptor fas/genética
14.
J Biol Chem ; 293(52): 19998-20007, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30341174

RESUMEN

Proteins of the cyclin M family (CNNMs; also called ancient conserved domain proteins, or ACDPs) are represented by four integral membrane proteins that have been proposed to function as Mg2+ transporters. CNNMs are associated with a number of genetic diseases affecting ion movement and cancer via their association with highly oncogenic phosphatases of regenerating liver (PRLs). Structurally, CNNMs contain an N-terminal extracellular domain, a transmembrane domain (DUF21), and a large cytosolic region containing a cystathionine-ß-synthase (CBS) domain and a putative cyclic nucleotide-binding homology (CNBH) domain. Although the CBS domain has been extensively characterized, little is known about the CNBH domain. Here, we determined the first crystal structures of the CNBH domains of CNNM2 and CNNM3 at 2.6 and 1.9 Å resolutions. Contrary to expectation, these domains did not bind cyclic nucleotides, but mediated dimerization both in crystals and in solution. Analytical ultracentrifugation experiments revealed an inverse correlation between the propensity of the CNBH domains to dimerize and the ability of CNNMs to mediate Mg2+ efflux. CNBH domains from active family members were observed as both dimers and monomers, whereas the inactive member, CNNM3, was observed only as a dimer. Mutational analysis revealed that the CNBH domain was required for Mg2+ efflux activity of CNNM4. This work provides a structural basis for understanding the function of CNNM proteins in Mg2+ transport and associated diseases.


Asunto(s)
Ciclinas/metabolismo , Magnesio/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión , Cristalografía por Rayos X , Ciclinas/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
15.
J Biol Chem ; 293(12): 4566-4574, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29352104

RESUMEN

Rab GTPases are key regulators of membrane trafficking, and many are activated by guanine nucleotide exchange factors bearing a differentially expressed in normal and neoplastic cells (DENN) domain. By activating the small GTPase Rab12, DENN domain-containing protein 3 (DENND3) functions in autophagy. Here, we identified a structural domain (which we name PHenn) containing a pleckstrin homology subdomain that binds actin and is required for DENND3 function in autophagy. We found that a hydrophobic patch on an extended ß-turn of the PHenn domain mediates an intramolecular interaction with the DENN domain of DENND3. We also show that DENND3 binds actin through a surface of positively charged residues on the PHenn domain. Substitutions that blocked either DENN or actin binding compromised the role of DENND3 in autophagy. These results provide new mechanistic insight into the structural determinants regulating DENND3 in autophagy and lay the foundation for future investigations of the DENN protein family.


Asunto(s)
Actinas/metabolismo , Autofagia , Proteínas Sanguíneas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Actinas/química , Actinas/genética , Proteínas Sanguíneas/química , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Fosfoproteínas/química , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
16.
Structure ; 25(5): 719-729.e3, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28392261

RESUMEN

The N-end rule pathway controls the half-life of proteins based on their N-terminal residue. Positively charged type 1 N-degrons are recognized by a negatively charged pocket on the Zn finger named the UBR box. Here, we show that the UBR box is rigid, but bound water molecules in the pocket provide the structural plasticity required to bind different positively charged amino acids. Ultra-high-resolution crystal structures of arginine, histidine, and methylated arginine reveal that water molecules mediate the binding of N-degron peptides. Using a high-throughput binding assay and isothermal titration calorimetry, we demonstrate that the UBR box is able to bind methylated arginine and lysine peptides with high affinity and measure the preference for hydrophobic residues in the second position in the N-degron peptide. Finally, we show that the V122L mutation present in Johanson-Blizzard syndrome patients changes the specificity for the second position due to occlusion of the secondary pocket.


Asunto(s)
Enlace de Hidrógeno , Péptidos/metabolismo , Ubiquitina-Proteína Ligasas/química , Ano Imperforado/genética , Sitios de Unión , Displasia Ectodérmica/genética , Trastornos del Crecimiento/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hipotiroidismo/genética , Discapacidad Intelectual/genética , Mutación Missense , Nariz/anomalías , Enfermedades Pancreáticas/genética , Péptidos/química , Unión Proteica , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Agua/química
17.
Sci Rep ; 7(1): 48, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28246390

RESUMEN

The phosphatases of regenerating liver (PRLs) are involved in tumorigenesis and metastatic cancer yet their cellular function remains unclear. Recent reports have shown PRL phosphatases bind tightly to the CNNM family of membrane proteins to regulate magnesium efflux. Here, we characterize the interactions between the CBS-pair (Bateman) domain of CNNM3 and either PRL2 or PRL3 using X-ray crystallography, isothermal titration calorimetry, and activity assays. We report four new crystal structures of PRL proteins bound to the CNNM3 CBS-pair domain that reveal the effects of cysteine disulphide formation and nucleotide binding on complex formation. We use comprehensive mutagenesis of the PRL3 catalytic site to quantify the importance of different PRL amino acids, including cysteine 104, leucine 108, and arginine 110, for CNNM binding and phosphatase activity. We show the PRL3 R138E mutant is selectively deficient in CNNM3 binding with the potential to distinguish between the downstream effects of phosphatase and CNNM-binding activities in vivo. Through a novel activity assay, we show that PRL3 has magnesium-sensitive phosphatase activity with ATP and other nucleotides. Our results identify a strong correlation between phosphatase activity and CNNM binding and support the contention that PRL function as pseudophosphatases regulated by chemical modifications of their catalytic cysteine.


Asunto(s)
Ciclinas/química , Magnesio/metabolismo , Proteínas de Neoplasias/química , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Modelos Moleculares , Proteínas de Neoplasias/genética , Fosforilación , Mutación Puntual , Unión Proteica , Proteínas Tirosina Fosfatasas/genética
18.
Structure ; 25(2): 376-383, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28111017

RESUMEN

Ankyrin B (AnkB/LegAU13) is a translocated F box effector essential for the intracellular replication of the pathogen Legionella pneumophila. AnkB co-opts a host ubiquitin ligase to decorate the pathogen-containing vacuole with K48-linked polyubiquitinated proteins and degrade host proteins as a source of energy. Here, we report that AnkB commandeers the host ubiquitin-proteasome system through mimicry of two eukaryotic protein domains. Using X-ray crystallography, we determined the 3D structure of AnkB in complex with Skp1, a component of the human SCF ubiquitination ligase. The structure confirms that AnkB contains an N-terminal F box similar to Skp2 and a C-terminal substrate-binding domain similar to eukaryotic ankyrin repeats. We identified crucial amino acids in the substrate-binding domain of AnkB and showed them to be essential for the function of AnkB in L. pneumophila intracellular proliferation. The study reveals how Legionella uses molecular mimicry to manipulate the host ubiquitination pathway and proliferate intracellularly.


Asunto(s)
Ancirinas/química , Interacciones Huésped-Patógeno , Legionella pneumophila/genética , Proteínas Periplasmáticas/química , Proteínas Quinasas Asociadas a Fase-S/química , Secuencia de Aminoácidos , Ancirinas/genética , Ancirinas/metabolismo , Sitios de Unión , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Modelos Moleculares , Imitación Molecular , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
19.
PLoS One ; 11(12): e0166643, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27923041

RESUMEN

Salmonella Typhimurium GtgE is an effector protein contributing to the virulence of this pathogen. It was shown to possess highly selective proteolytic activity against a subset of Rab proteins that helps in evasion of Salmonella-containing vacuole (SCV) fusion with lysosomes. Cys45, His151 and Asp169 are essential for proteolytic activity. The structure of a C-terminal fragment GtgE(79-214) indicated the presence of a papain-like fold. Here, we present the structure of GtgE(17-214) containing the fully assembled active site. The design of a proteolytically active and crystallizable GtgE construct was aided by NMR spectroscopy. The protein indeed displays papain-like fold with an assembled Cys-His-Asp catalytic triad. Like the full-length GtgE, the crystallizable construct showed low activity in vitro for its known substrates, Rab32 and Rab29. NMR titration experiments showed at most very weak binding of GtgE to the peptide encompassing the Rab29 cleavage site. In view of the low in vitro activity and poor substrate binding, we postulate that the function of GtgE in vivo as a proteolytic enzyme is dependent on other factor(s), such as a protein partner or interactions with the SCV membrane, which stimulate(s) GtgE activity in vivo.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Asparagina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Histidina/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
20.
EMBO Rep ; 17(12): 1890-1900, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27856537

RESUMEN

PRLs (phosphatases of regenerating liver) are frequently overexpressed in human cancers and are prognostic markers of poor survival. Despite their potential as therapeutic targets, their mechanism of action is not understood in part due to their weak enzymatic activity. Previous studies revealed that PRLs interact with CNNM ion transporters and prevent CNNM4-dependent Mg2+ transport, which is important for energy metabolism and tumor progression. Here, we report that PRL-CNNM complex formation is regulated by the formation of phosphocysteine. We show that cysteine in the PRL catalytic site is endogenously phosphorylated as part of the catalytic cycle and that phosphocysteine levels change in response to Mg2+ levels. Phosphorylation blocks PRL binding to CNNM Mg2+ transporters, and mutations that block the PRL-CNNM interaction prevent regulation of Mg2+ efflux in cultured cells. The crystal structure of the complex of PRL2 and the CBS-pair domain of the Mg2+ transporter CNNM3 reveals the molecular basis for the interaction. The identification of phosphocysteine as a regulatory modification opens new perspectives for signaling by protein phosphatases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Cisteína/análogos & derivados , Homeostasis , Magnesio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Proteínas de Transporte de Catión , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Neoplasias , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA