Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712123

RESUMEN

Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse, facilitate axon retraction away from lesion boundaries, as well as play a key role in orchestrating the growth-inhibitory glial scar. Little is known about the role of sustained inflammation in chronic SCI, or whether chronic inflammation affects repair and regeneration. We performed transcriptional analysis using the Nanostring Neuropathology panel to characterize the resolution of inflammation into chronic SCI, to characterize the chronic SCI microenvironment, as well as to identify spinal cord responses to macrophage depletion and repopulation using the CSF1R inhibitor, PLX-5622. We determined the ability for macrophage depletion and repopulation to augment axon growth into chronic lesions both with and without regenerative stimulation using neuronal-specific PTEN knockout (PTEN-KO). PTEN-KO was delivered with spinal injections of retrogradely transported adeno associated viruses (AAVrg's). Both transcriptional analyses and immunohistochemistry revealed the ability for PLX-5622 to significantly deplete inflammation around and within chronic SCI lesions, with a return to pre-depleted inflammatory densities after treatment removal. Neuronal-specific transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with macrophage depletion alone. Axon densities significantly increased within the lesion after PLX-5622 treatment with a more consistent effect observed in mice with inflammatory repopulation. PTEN-KO did not further increase axon densities within the lesion beyond effects induced by PLX-5622. We identified that PLX-5622 increased axon densities within the lesion that are histologically identified as 5-HT+and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglia densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.

2.
Dev Cell ; 59(4): 496-516.e6, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38228141

RESUMEN

The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.


Asunto(s)
Cicatriz , Pabellón Auricular , Animales , Cicatriz/patología , Lactoferrina , Pabellón Auricular/patología , Macrófagos/patología , Murinae/fisiología
3.
Exp Neurol ; 372: 114574, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37852468

RESUMEN

Neonatal intraventricular hemorrhage (IVH) releases blood products into the lateral ventricles and brain parenchyma. There are currently no medical treatments for IVH and surgery is used to treat a delayed effect of IVH, post-hemorrhagic hydrocephalus. However, surgery is not a cure for intrinsic brain injury from IVH, and is performed in a subacute time frame. Like many neurological diseases and injuries, innate immune activation is implicated in the pathogenesis of IVH. Innate immune activation is a pharmaceutically targetable mechanism to reduce brain injury and post-hemorrhagic hydrocephalus after IVH. Here, we tested the macrolide antibiotic azithromycin, which has immunomodulatory properties, to reduce innate immune activation in an in vitro model of microglial activation using the blood product hemoglobin (Hgb). We then utilized azithromycin in our in vivo model of IVH, using intraventricular blood injection into the lateral ventricle of post-natal day 5 rat pups. In both models, azithromycin modulated innate immune activation by several outcome measures including mitochondrial bioenergetic analysis, cytokine expression and flow cytometric analysis. This suggests that azithromycin, which is safe for neonates, could hold promise for modulating innate immune activation after IVH.


Asunto(s)
Lesiones Encefálicas , Hidrocefalia , Ratas , Animales , Azitromicina/farmacología , Encéfalo/patología , Hemorragia Cerebral/patología , Hidrocefalia/etiología , Lesiones Encefálicas/patología , Hemoglobinas/farmacología
4.
Exp Neurol ; 368: 114502, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558155

RESUMEN

Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and transiently restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTENFloxΔ/Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice, indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex which was corroborated by a loss of ß-tubulin III labeling above the lesion within spinal cords after PTEN-KO. PTEN-KO mice had significantly more ß-tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO on neuronal health and viability should be further explored.


Asunto(s)
Traumatismos de la Médula Espinal , Tubulina (Proteína) , Animales , Humanos , Ratones , Axones/patología , Ratones Endogámicos C57BL , Regeneración Nerviosa/fisiología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Tractos Piramidales/patología , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Tubulina (Proteína)/metabolismo
5.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131840

RESUMEN

Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTEN FloxΔ / Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex. PTEN-KO mice had significantly more ß - tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO may exert neurotoxic effects.

6.
J Neurotrauma ; 39(15-16): 1075-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35373589

RESUMEN

Advanced age at the time of spinal cord injury (SCI) exacerbates damage from reactive oxygen species (ROS). Mechanisms underlying this age-dependent response are not well understood and may arise from decreased antioxidant defense. We investigated how spinal cord levels of the antioxidant glutathione (GSH), and its regulation, change with age and SCI. GSH is used by GSH peroxidase to sequester ROS and is recycled by GSH reductase. Male and female, 4- and 14-month-old (MO) mice received a 60 kDyn contusion SCI, and the levels of GSH and its regulatory enzymes were evaluated at one and three days post-injury (dpi). The mice with SCI were treated with N-acetylcysteine-amide (NACA; 150 mg/kg), a cysteine supplement that increases GSH, to determine effects on functional and histological outcomes. GSH was decreased with older age in sham mice, and an SCI-dependent depletion was observed in 4-MO mice by three dpi. Neither age nor injury affected the abundance of proteins regulating GSH synthesis or recycling. GSH peroxidase activity, however, increased after SCI only in 4-MO mice. In contrast, GSH peroxidase activity was increased in 14-MO sham mice, indicating that spinal cords of older mice have an elevated oxidative state. Indeed, 14-MO sham mice had more oxidized protein (3-nitrotyrosine [3-NT]) within their spinal cords compared with 4-MO sham mice. Only 4-MO mice had significant injury-induced increases in 3-NT at three dpi. NACA treatment restored GSH and improved the redox environment in injured 4- and 14-MO mice at one dpi; however, three days of NACA delivery did not improve motor, sensory, or anatomical deficits at 28 dpi in 4-MO mice and trended toward toxicity in all outcomes in 14-MO mice. Our observation suggests that GSH levels at acute stages of SCI play a minimal role in age-dependent outcomes reported after SCI in mice. Collective results implicate elements of injury occurring after three dpi, such as inflammation, as key regulators of age-dependent effects.


Asunto(s)
Antioxidantes , Traumatismos de la Médula Espinal , Animales , Antioxidantes/metabolismo , Femenino , Glutatión/metabolismo , Masculino , Ratones , Estrés Oxidativo , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal , Traumatismos de la Médula Espinal/patología
7.
J Neuroinflammation ; 18(1): 113, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985529

RESUMEN

BACKGROUND: Sex and age are emerging as influential variables that affect spinal cord injury (SCI) recovery. Despite a changing demographic towards older age at the time of SCI, the effects of sex or age on inflammation remain to be elucidated. This study determined the sex- and age-dependency of the innate immune response acutely after SCI. METHODS: Male and female mice of ages 4- and 14-month-old received T9 contusion SCI and the proportion of microglia, monocyte-derived macrophages (MDM), and neutrophils surrounding the lesion were determined at 3- and 7-day post-injury (DPI) using flow cytometry. Cell counts of microglia and MDMs were obtained using immunohistochemistry to verify flow cytometry results at 3-DPI. Microglia and MDMs were separately isolated using fluorescence-activated cell sorting (FACS) at 3-day post-injury (DPI) to assess RNA expression of 27 genes associated with activation, redox, and debris metabolism/clearance. RESULTS: Flow cytometry revealed that being female and older at the time of injury significantly increased MDMs relative to other phagocytes, specifically increasing the ratio of MDMs to microglia at 3-DPI. Cell counts using immunohistochemistry revealed that male mice have more total microglia within SCI lesions that can account for a lower MDM/microglia ratio. With NanoString analyses of 27 genes, only 1 was differentially expressed between sexes in MDMs; specifically, complement protein C1qa was increased in males. No genes were affected by age in MDMs. Only 2 genes were differentially regulated in microglia between sexes after controlling for false discovery rate, specifically CYBB (NOX2) as a reactive oxygen species (ROS)-associated marker as well as MRC1 (CD206), a gene associated with reparative phenotypes. Both genes were increased in female microglia. No microglial genes were differentially regulated between ages. Differences between microglia and MDMs were found in 26 of 27 genes analyzed, all expressed higher in MDMs with three exceptions. Specifically, C1qa, cPLA2, and CD86 were expressed higher in microglia. CONCLUSIONS: These findings indicate that inflammatory responses to SCI are sex-dependent at both the level of cellular recruitment and gene expression.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Envejecimiento , Macrófagos/metabolismo , Microglía/metabolismo , Caracteres Sexuales , Traumatismos de la Médula Espinal/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Sexuales
8.
Front Immunol ; 12: 628156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046031

RESUMEN

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-ß (Aß) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aß associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aß plaque burden. We also observed that Aß preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Arginasa/metabolismo , Encéfalo/enzimología , Perfilación de la Expresión Génica , Microglía/enzimología , Células Mieloides/enzimología , Degeneración Nerviosa , Transcriptoma , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Arginasa/genética , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Haploinsuficiencia , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Mutación , Células Mieloides/patología
9.
ACS Omega ; 6(5): 3847-3857, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585763

RESUMEN

Macrophages, one of the most important phagocytic cells of the immune system, are highly plastic and are known to exhibit diverse roles under different pathological conditions. The ability to repolarize macrophages from pro-inflammatory (M1) to anti-inflammatory (M2) or vice versa offers a promising therapeutic approach for treating various diseases such as traumatic injury and cancer. Herein, it is demonstrated that macrophage-engineered vesicles (MEVs) generated by disruption of macrophage cellular membranes can be used as nanocarriers capable of reprogramming macrophages and microglia toward either pro- or anti-inflammatory phenotypes. MEVs can be produced at high yields and easily loaded with diagnostic molecules or chemotherapeutics and delivered to both macrophages and cancer cells in vitro and in vivo. Overall, MEVs show promise as potential delivery vehicles for both therapeutics and their ability to controllably modulate macrophage/microglia inflammatory phenotypes.

10.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008785

RESUMEN

Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib treatment (6 mg/kg/day, IP, starting 3 h post-injury for 7 or 14 days) reduced BTK activation and total BTK levels, attenuated the injury-induced elevations in Iba1, GFAP, CD138, and IgG at 7 or 14 days post-injury without reduction in CD45RA B cells, improved locomotor function (BBB scores), and resulted in a significant reduction in lesion volume and significant improvement in tissue-sparing 11 weeks post-injury. These results indicate that Ibrutinib exhibits neuroprotective effects by blocking excessive neuroimmune responses through BTK-mediated microglia/astroglial activation and B cell/antibody response in rat models of SCI. These data identify BTK as a potential therapeutic target for SCI.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Neuroinmunomodulación , Recuperación de la Función , Traumatismos de la Médula Espinal/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Adenina/uso terapéutico , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Formación de Anticuerpos/efectos de los fármacos , Astrocitos/patología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Peso Corporal/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunoglobulina G/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Actividad Motora/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Fosforilación/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Ratas , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Bazo/patología , Sindecano-1/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos
11.
Sci Rep ; 10(1): 16596, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024189

RESUMEN

A growing body of evidence shows that altering the inflammatory response by alternative macrophage polarization is protective against complications related to acute myocardial infarction (MI). We have previously shown that oral azithromycin (AZM), initiated prior to MI, reduces inflammation and its negative sequelae on the myocardium. Here, we investigated the immunomodulatory role of a liposomal AZM formulation (L-AZM) in a clinically relevant model to enhance its therapeutic potency and avoid off-target effects. L-AZM (40 or 10 mg/kg, IV) was administered immediately post-MI and compared to free AZM (F-AZM). L-AZM reduced cardiac toxicity and associated mortality by 50% in mice. We observed a significant shift favoring reparatory/anti-inflammatory macrophages with L-AZM formulation. L-AZM use resulted in a remarkable decrease in cardiac inflammatory neutrophils and the infiltration of inflammatory monocytes. Immune cell modulation was associated with the downregulation of pro-inflammatory genes and the upregulation of anti-inflammatory genes. The immunomodulatory effects of L-AZM were associated with a reduction in cardiac cell death and scar size as well as enhanced angiogenesis. Overall, L-AZM use enhanced cardiac recovery and survival after MI. Importantly, L-AZM was protective from F-AZM cardiac off-target effects. We demonstrate that the liposomal formulation of AZM enhances the drug's efficacy and safety in an animal model of acute myocardial injury. This is the first study to establish the immunomodulatory properties of liposomal AZM formulations. Our findings strongly support clinical trials using L-AZM as a novel and clinically relevant therapeutic target to improve cardiac recovery and reduce heart failure post-MI in humans.


Asunto(s)
Azitromicina/administración & dosificación , Azitromicina/farmacología , Cardiotónicos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Factores Inmunológicos , Liposomas , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/inmunología , Animales , Modelos Animales de Enfermedad , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/patología
12.
J Neurosurg Pediatr ; : 1-8, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32032950

RESUMEN

OBJECTIVE: The authors sought to determine if hydrocephalus caused a proinflammatory state within white matter as is seen in many other forms of neonatal brain injury. Common causes of hydrocephalus (such as trauma, infection, and hemorrhage) are inflammatory insults themselves and therefore confound understanding of how hydrocephalus itself affects neuroinflammation. Recently, a novel animal model of hydrocephalus due to a genetic mutation in the Ccdc39 gene has been developed in mice. In this model, ciliary dysfunction leads to early-onset ventriculomegaly, astrogliosis, and reduced myelination. Because this model of hydrocephalus is not caused by an antecedent proinflammatory insult, it was utilized to study the effect of hydrocephalus on inflammation within the white matter of the corpus callosum. METHODS: A Meso Scale Discovery assay was used to measure levels of proinflammatory cytokines in whole brain from animals with and without hydrocephalus. Immunohistochemistry was used to measure macrophage activation and NG2 expression within the white matter of the corpus callosum in animals with and without hydrocephalus. RESULTS: In this model of hydrocephalus, levels of cytokines throughout the brain revealed a more robust increase in classic proinflammatory cytokines (interleukin [IL]-1ß, CXCL1) than in immunomodulatory cytokines (IL-10). Increased numbers of macrophages were found within the corpus callosum. These macrophages were polarized toward a proinflammatory phenotype as assessed by higher levels of CD86, a marker of proinflammatory macrophages, compared to CD206, a marker for antiinflammatory macrophages. There was extensive structural damage to the corpus callosum of animals with hydrocephalus, and an increase in NG2-positive cells. CONCLUSIONS: Hydrocephalus without an antecedent proinflammatory insult induces inflammation and tissue injury in white matter. Future studies with this model will be useful to better understand the effects of hydrocephalus on neuroinflammation and progenitor cell development. Antiinflammatory therapy for diseases that cause hydrocephalus may be a powerful strategy to reduce tissue damage.

13.
Front Immunol ; 11: 582998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519806

RESUMEN

Alzheimer's disease (AD) includes several hallmarks comprised of amyloid-ß (Aß) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aß deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Arginasa/metabolismo , Déficit de la Atención y Trastornos de Conducta Disruptiva/metabolismo , Células Mieloides/fisiología , Animales , Arginasa/genética , Autofagia , Conducta Animal , Modelos Animales de Enfermedad , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Inflamación Neurogénica , Transducción de Señal
14.
Exp Neurol ; 320: 112971, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247195

RESUMEN

Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages. METHODS: 17-day-old rat pups received intraperitoneal DHA or vehicle after CCI or SHAM surgery followed by DHA diet or continuation of REG diet to create DHACCI, REGCCI, SHAMDHA and SHAMREG groups. We measured brain nitrates/nitrites (NOx) at post injury day (PID) 1 to assess oxidative stress. We tested memory using Novel Object Recognition (NOR) at PID14. At PID 3 and 7, we measured reactivity of microglial activation markers Iba1, CD68 and CD206 and astrocyte marker GFAP in the injured cortex. At PID3, 7 and 30 we measured mRNA levels of inflammation-related genes and transcription factors in flow-sorted brain cells. RESULTS: DHA decreased oxidative stress at PID1 and pro-inflammatory microglial activation at PID3. CCI increased mRNA levels of two interferon regulatory family transcription factors, blunted by DHA, particularly in microglia-enriched cell populations at PID7. CCI increased mRNA levels of genes associated with "pro- " and "anti-" inflammatory activity at PID3, 7 and 30. Most notably within the microglia-enriched population, DHA blunted increased mRNA levels of pro-inflammatory genes at PID 3 and 7 and of anti-inflammatory genes at PID 30. Particularly in microglia, we observed parallel activation of pro-inflammatory and anti-inflammatory genes. DHA improved performance on NOR at PID14 after CCI. CONCLUSIONS: DHA decreased oxidative stress and histologic and mRNA markers of microglial pro-inflammatory activation in rat pup brain acutely after CCI associated with improved short term cognitive function. DHA administration after CCI has neuroprotective effects, which may result in part from modulation of microglial activation toward a less inflammatory profile in the first week after CCI. Future and ongoing studies will focus on phagocytic function and reactive oxygen species production in microglia and macrophages to test functional effects of DHA on neuroinflammation in our model. Given its favorable safety profile in children, DHA is a promising candidate therapy for pediatric TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Inflamación/patología , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
15.
CNS Neurosci Ther ; 25(5): 591-600, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677254

RESUMEN

INTRODUCTION: Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. AIMS: To improve the efficacy and reduce antibiotic resistance risk of AZM-based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow-derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF-gamma) with and without derivative costimulation. Pro- and anti-inflammatory cytokine production, IL-12 and IL-10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. RESULTS: Azithromycin and some derivatives increased IL-10 and reduced IL-12 production of M1 macrophages. IL-10/IL-12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. CONCLUSIONS: Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL-10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.


Asunto(s)
Azitromicina/análogos & derivados , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Azitromicina/química , Azitromicina/farmacología , Línea Celular Tumoral , Inflamación/inmunología , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Macrófagos/inmunología , Ratones Endogámicos C57BL , Neuronas/fisiología
16.
Brain Behav Immun ; 76: 139-150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30453022

RESUMEN

OBJECTIVE: The average age at the time of spinal cord injury (SCI) has increased to 43 years old. Middle-aged mice (14 months old, MO) exhibit impaired recovery after SCI with age-dependent increases in reactive oxygen species (ROS) production through NADPH oxidase (NOX) along with pro-inflammatory macrophage activation. Despite these aging differences, clinical therapies are being examined in individuals regardless of age based upon preclinical data generated primarily using young animals (∼4 MO). Our objective is to test the extent to which age affects SCI treatment efficacy. Specifically, we hypothesize that the effectiveness of apocynin, a NOX inhibitor, is age-dependent in SCI. METHODS: Apocynin treatment (5 mg/kg) or vehicle was administered 1 and 6 h after moderate T9 contusion SCI (50kdyn IH) and then daily for 1 week to 4 and 14 MO mice. Locomotor and anatomical recovery was evaluated for 28 days. Monocyte-derived macrophage (MDM) and microglial activation and ROS production were evaluated at 3 and 28 days post-injury. RESULTS: Apocynin improved functional and anatomical recovery in 14 but not 4 MO SCI mice. Apocynin-mediated recovery was coincident with significant reductions in MDM infiltration and MDM-ROS production in 14 MO SCI mice. Importantly, microglial activation was unaffected by treatment. CONCLUSION: These results indicate that apocynin exhibits age-dependent neuroprotective effects by blocking excessive neuroinflammation through NOX-mediated ROS production in MDMs. Further, these data identify age as a critical regulator for SCI treatment efficacy and indicate that pharmacologically reduced macrophage, but not microglia, activation and ROS production reverses age-associated neurological impairments.


Asunto(s)
Activación de Macrófagos/fisiología , NADPH Oxidasas/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Acetofenonas/farmacología , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Inflamación , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , NADPH Oxidasas/fisiología , Fármacos Neuroprotectores , Oxidación-Reducción , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/inmunología
17.
J Neuroinflammation ; 15(1): 288, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30322390

RESUMEN

BACKGROUND: The migration of peripheral immune cells and splenocytes to the ischemic brain is one of the major causes of delayed neuroinflammation after permanent large vessel stroke. Other groups have demonstrated that leukemia inhibitory factor (LIF), a cytokine that promotes neural cell survival through upregulation of antioxidant enzymes, promotes an anti-inflammatory phenotype in several types of immune cells. The goal of this study was to determine whether LIF treatment modulates the peripheral immune response after stroke. METHODS: Young male (3 month) Sprague-Dawley rats underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals were administered LIF (125 µg/kg) or PBS at 6, 24, and 48 h prior to euthanization at 72 h. Bone marrow-derived macrophages were treated with LIF (20 ng/ml) or PBS after stimulation with interferon gamma + LPS. Western blot was used to measure protein levels of CD11b, IL-12, interferon inducible protein-10, CD3, and the LIF receptor in spleen and brain tissue. ELISA was used to measure IL-10, IL-12, and interferon gamma. Isolectin was used to label activated immune cells in brain tissue sections. Statistical analysis was performed using one-way ANOVA and Student's t test. A Kruskal-Wallis test followed by Bonferroni-corrected Mann-Whitney tests was performed if data did not pass the D'Agostino-Pearson normality test. RESULTS: LIF-treated rats showed significantly lower levels of the LIF receptor and interferon gamma in the spleen and CD11b levels in the brain compared to their PBS-treated counterparts. Fluorescence from isolectin-binding immune cells was more prominent in the ipsilateral cortex and striatum after PBS treatment compared to LIF treatment. MCAO + LIF significantly decreased splenic levels of CD11b and CD3 compared to sham surgery. MCAO + PBS treatment significantly elevated splenic levels of interferon inducible protein-10 at 72 h after MCAO, while LIF treatment after MCAO returned interferon inducible protein 10 to sham levels. LIF administration with interferon gamma + LPS significantly reduced the IL-12/IL-10 production ratio compared to macrophages treated with interferon gamma + LPS alone. CONCLUSIONS: These data demonstrate that LIF promotes anti-inflammatory signaling through alterations of the IL-12/interferon gamma/interferon inducible protein 10 pathway.


Asunto(s)
Citocinas/metabolismo , Infarto de la Arteria Cerebral Media , Factor Inhibidor de Leucemia/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/patología , Interferón gamma/uso terapéutico , Lectinas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Bazo/patología , Estadísticas no Paramétricas , Factores de Tiempo
18.
PLoS One ; 13(7): e0200474, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001416

RESUMEN

INTRODUCTION: Acute myocardial infarction (MI) is a primary cause of worldwide morbidity and mortality. Macrophages are fundamental components of post-MI inflammation. Pro-inflammatory macrophages can lead to adverse cardiac remodeling and heart failure while anti-inflammatory/reparative macrophages enhance tissue healing. Shifting the balance between pro-inflammatory and reparative macrophages post-MI is a novel therapeutic strategy. Azithromycin (AZM), a commonly used macrolide antibiotic, polarizes macrophages towards the anti-inflammatory phenotype, as shown in animal and human studies. We hypothesized that AZM modulates post-MI inflammation and improves cardiac recovery. METHODS AND RESULTS: Male WT mice (C57BL/6, 6-8 weeks old) were treated with either oral AZM (160 mg/kg/day) or vehicle (control) starting 3 days prior to MI and continued to day 7 post-MI. We observed a significant reduction in mortality with AZM therapy. AZM-treated mice showed a significant decrease in pro-inflammatory (CD45+/Ly6G-/F4-80+/CD86+) and increase in anti-inflammatory (CD45+/Ly6G-/F4-80+/CD206+) macrophages, decreasing the pro-inflammatory/anti-inflammatory macrophage ratio in the heart and peripheral blood as assessed by flow cytometry and immunohistochemistry. Macrophage changes were associated with a significant decline in pro- and increase in anti-inflammatory cytokines. Mechanistic studies confirmed the ability of AZM to shift macrophage response towards an anti-inflammatory state under hypoxia/reperfusion stress. Additionally, AZM treatment was associated with a distinct decrease in neutrophil count due to apoptosis, a known signal for shifting macrophages towards the anti-inflammatory phenotype. Finally, AZM treatment improved cardiac recovery, scar size, and angiogenesis. CONCLUSION: Azithromycin plays a cardioprotective role in the early phase post-MI through attenuating inflammation and enhancing cardiac recovery. Post-MI treatment and human translational studies are warranted to examine the therapeutic applications of AZM.


Asunto(s)
Azitromicina/farmacología , Cardiotónicos/farmacología , Macrófagos/inmunología , Infarto del Miocardio/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Administración Oral , Animales , Antígenos de Diferenciación/inmunología , Citocinas/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Macrófagos/patología , Masculino , Ratones , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Neovascularización Fisiológica/inmunología
19.
J Neurosci Res ; 96(6): 969-977, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28696010

RESUMEN

Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement-mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review the processes by which myelin debris may be cleared through macrophage surface receptors and the complement system, how this differentially influences macrophage and microglial activation states, and how the cellular functions of these myelin macrophages and complement proteins contribute to chronic inflammation and secondary injury after SCI.


Asunto(s)
Macrófagos/inmunología , Microglía/inmunología , Vaina de Mielina/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Humanos , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitosis
20.
eNeuro ; 4(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828403

RESUMEN

Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/patología , Activación Transcripcional/fisiología , Factor de Transcripción Activador 3/metabolismo , Animales , Proteínas de Unión al Calcio , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antagonistas de Hormonas/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mifepristona/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/patología , Neuropatía Ciática/fisiopatología , Células Receptoras Sensoriales/fisiología , Estatmina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA