Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 19(8): e0307844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146349

RESUMEN

An individual's likelihood of developing non-communicable diseases is often influenced by the types, intensities and duration of exposures at work. Job exposure matrices provide exposure estimates associated with different occupations. However, due to their time-consuming expert curation process, job exposure matrices currently cover only a subset of possible workplace exposures and may not be regularly updated. Scientific literature articles describing exposure studies provide important supporting evidence for developing and updating job exposure matrices, since they report on exposures in a variety of occupational scenarios. However, the constant growth of scientific literature is increasing the challenges of efficiently identifying relevant articles and important content within them. Natural language processing methods emulate the human process of reading and understanding texts, but in a fraction of the time. Such methods can increase the efficiency of both finding relevant documents and pinpointing specific information within them, which could streamline the process of developing and updating job exposure matrices. Named entity recognition is a fundamental natural language processing method for language understanding, which automatically identifies mentions of domain-specific concepts (named entities) in documents, e.g., exposures, occupations and job tasks. State-of-the-art machine learning models typically use evidence from an annotated corpus, i.e., a set of documents in which named entities are manually marked up (annotated) by experts, to learn how to detect named entities automatically in new documents. We have developed a novel annotated corpus of scientific articles to support machine learning based named entity recognition relevant to occupational substance exposures. Through incremental refinements to the annotation process, we demonstrate that expert annotators can attain high levels of agreement, and that the corpus can be used to train high-performance named entity recognition models. The corpus thus constitutes an important foundation for the wider development of natural language processing tools to support the study of occupational exposures.


Asunto(s)
Procesamiento de Lenguaje Natural , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposoma , Ocupaciones
2.
Curr Issues Mol Biol ; 46(4): 3394-3407, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38666943

RESUMEN

Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today's pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved "Epi-drugs". Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30-45% at 100 µM of the tested compounds.

3.
ChemMedChem ; 18(22): e202300322, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37792577

RESUMEN

The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.


Asunto(s)
Antineoplásicos , Benzotiazoles , Línea Celular Tumoral , Benzotiazoles/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales
4.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675949

RESUMEN

Edible mushrooms contain biologically active compounds with antioxidant, antimicrobial, immunomodulatory and anticancer properties. The link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. Lyophilized Pleurotus eryngii (PE) mushrooms, selected due to their strong lactogenic effect and anti-genotoxic, immunomodulatory properties, underwent in vitro static batch fermentation for 24 h by fecal microbiota from eight elderly apparently healthy volunteers (>65 years old). The fermentation-induced changes in fecal microbiota communities were examined using Next Generation Sequencing of the hypervariable regions of the 16S rRNA gene. Primary processing and analysis were conducted using the Ion Reporter Suite. Changes in the global metabolic profile were assessed by 1H NMR spectroscopy, and metabolites were assigned by 2D NMR spectroscopy and the MetaboMiner platform. PLS-DA analysis of both metataxonomic and metabolomic data showed a significant cluster separation of PE fermented samples relative to controls. DEseq2 analysis showed that the abundance of families such as Lactobacillaceae and Bifidobacteriaceae were increased in PE samples. Accordingly, in metabolomics, more than twenty metabolites including SCFAs, essential amino acids, and neurotransmitters discriminate PE samples from the respective controls, further validating the metataxonomic findings.

5.
Front Nutr ; 9: 988517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082029

RESUMEN

Pleurotus eryngii mushrooms are commercially cultivated and widely consumed due to their organoleptic properties, and the low caloric and high nutritional value. In addition, they contain various biologically active and health-promoting compounds; very recently, their genoprotective effect in Caco-2 cells after their fermentation by the human fecal microbiota was also documented. In the current study, the effect of P. eryngii pre- and post-fermentation supernatants in micronuclei formation was evaluated in human lymphocytes. In addition, the genoprotective properties of increasing concentrations of aqueous extracts from P. eryngii mushrooms (150, 300, 600 mg/kg) against the cyclophosphamide-induced DNA damage were studied in young and elderly female and male mice in bone marrow and whole blood cells. The ability of the highest dose (600 mg/kg) to regulate the main cellular signaling pathways was also evaluated in gut and liver tissues of female animals by quantifying the mRNA expression of NrF2, Nfkß, DNMT1, and IL-22 genes. P. eryngii post-fermentation, but not pre-fermentation, supernatants were able to protect human lymphocytes from the mitomycin C-induced DNA damage in a dose-dependent manner. Similarly, genoprotection was also observed in bone marrow cells of mice treated by gavage with P. eryngii extract. The effect was observed in all the experimental groups of mice (young and elderly, male and female) and was more potent in young female mice. Overexpression of all genes examined was observed in both tissues, mainly among the elderly animals. In conclusion, P. eryngii mushrooms were shown to maintain genome integrity through protecting cells from genotoxic insults. These beneficial effects can be attributed to their antioxidant and immunomodulatory properties, as well as their ability to regulate the cell's epigenetic mechanisms and maintain cell homeostasis.

6.
J Fungi (Basel) ; 8(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35448559

RESUMEN

Recent studies have revealed the crucial role of several edible mushrooms and fungal compounds, mainly polysaccharides, in human health and disease. The investigation of the immunomodulating effects of mushroom polysaccharides, especially ß-glucans, and the link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. We investigated the immunomodulating effects of Pleurotus eryngii mushrooms, selected due to their high ß-glucan content, strong lactogenic effect, and potent geno-protective properties, following in vitro fermentation by fecal inocula from healthy elderly volunteers (>60 years old). The immunomodulating properties of the fermentation supernatants (FSs) were initially investigated in U937-derived human macrophages. Gene expression as well as pro- (TNF-α, IL-1ß) and anti-inflammatory cytokines (IL-10, IL-1Rα) were assessed and correlated with the fermentation process. The presence of P. eryngii in the fermentation process led to modifications in immune response, as indicated by the altered gene expression and levels of the cytokines examined, a finding consistent for all volunteers. The FSs immunomodulating effect on the volunteers' peripheral blood mononuclear cells (PBMCs) was verified through the use of cytometry by time of flight (CyTOF) analysis.

7.
Mol Nutr Food Res ; 65(20): e2001214, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34382747

RESUMEN

SCOPE: It has been proposed that endogenously form N-nitroso compounds (NOCs) are partly responsible for the link between red meat consumption and colorectal cancer (CRC) risk. As nitrite has been indicated as critical factor in the formation of NOCs, the impact of replacing the additive sodium nitrite (E250) by botanical extracts in the PHYTOME project is evaluated. METHOD AND RESULTS: A human dietary intervention study is conducted in which healthy subjects consume 300 g of meat for 2 weeks, in subsequent order: conventional processed red meat, white meat, and processed red meat with standard or reduced levels of nitrite and added phytochemicals. Consumption of red meat products enriched with phytochemicals leads to a significant reduction in the faecal excretion of NOCs, as compared to traditionally processed red meat products. Gene expression changes identify cell proliferation as main affects molecular mechanism. High nitrate levels in drinking water in combination with processed red meat intake further stimulates NOC formation, an effect that could be mitigated by replacement of E250 by natural plant extracts. CONCLUSION: These findings suggest that addition of natural extracts to conventionally processed red meat products may help to reduce CRC risk, which is mechanistically support by gene expression analyses.


Asunto(s)
Neoplasias Colorrectales/prevención & control , Productos de la Carne , Nitritos/efectos adversos , Compuestos Nitrosos/metabolismo , Fitoquímicos/administración & dosificación , Extractos Vegetales/administración & dosificación , Carne Roja , Adulto , Células CACO-2 , Femenino , Humanos , Masculino , Productos de la Carne/análisis , Compuestos Nitrosos/efectos adversos , Carne Roja/análisis , Adulto Joven
8.
Environ Toxicol Pharmacol ; 87: 103696, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34171487

RESUMEN

We have recently reported significant associations between exposure to polychlorinated biphenyls (PCB) and alterations on genome-wide methylation of leukocyte DNA of healthy volunteers and provided evidence in support of an etiological link between the observed CpG methylation variations and chronic lymphocytic leukemia. The present study aimed to elucidate the effects of PCB in human lymphocytes' methylome in vitro. Therefore, U937 cells and human peripheral blood monocytes (PBMC) were exposed in vitro to the dioxin-like PCB-118, the non-dioxin-like PCB-153, and hexachlorobenzene (HCB) and thorough cytotoxicity, genotoxicity and global CpG methylation analyses were performed. All compounds currently tested did not show any consistent significant genotoxicity at all exposure periods and concentrations used. On the contrary, extensive dose-dependent hypomethylation was observed, even at low concentrations, in stimulated PBMC treated with PCB-118 and PCB-153 as well as a small but statistically significant hypomethylation in HCB-treated stimulated cells.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Hexaclorobenceno/toxicidad , Leucocitos Mononucleares/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Adulto , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Humanos , Leucocitos Mononucleares/metabolismo , Células U937
9.
Epigenomics ; 12(15): 1287-1302, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32875816

RESUMEN

Aim: Inflammation represents a potential pathway through which socioeconomic position (SEP) is biologically embedded. Materials & methods: We analyzed inflammatory biomarkers in response to life course SEP by integrating multi-omics DNA-methylation, gene expression and protein level in 178 European Prospective Investigation into Cancer and Nutrition-Italy participants. Results & conclusion: We identified 61 potential cis acting CpG loci whose methylation levels were associated with gene expression at a Bonferroni correction. We examined the relationships between life course SEP and these 61 cis-acting regulatory methylation sites individually and jointly using several scores. Less-advantaged SEP participants exhibit, later in life, a lower inflammatory methylome score, suggesting an overall increased expression of the corresponding inflammatory genes or proteins, supporting the hypothesis that SEP impacts adult physiology through inflammation.


Asunto(s)
Epigenoma , Inflamación/epidemiología , Clase Social , Determinantes Sociales de la Salud , Adulto , Islas de CpG , Metilación de ADN , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad
10.
Molecules ; 25(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759726

RESUMEN

A variety of bioactive compounds, constituents of edible mushrooms, in particular ß-glucans, i.e., a group of ß-d-glucose polysaccharides abundant in the fungal cell walls, have been linked to immunomodulating, anticancer and prebiotic activities. The aim of the study was the investigation of the genoprotective effects of edible mushrooms produced by Pleurotus eryngii, Pleurotus ostreatus and Cyclocybe cylindracea (Basidiomycota). Mushrooms from selected strains of the species mentioned above were fermented in vitro using faecal inocula from healthy volunteers. The cytotoxic and anti-genotoxic properties of the fermentation supernatants (FSs) were investigated in Caco-2 human colon adenocarcinoma cells. The FSs were cytotoxic in a dose-dependent manner. Non-cytotoxic concentrations were used for the genotoxicity studies, which revealed that mushrooms' FSs have the ability to protect Caco-2 cells against tert-butyl hydroperoxide (t-BOOH), a known genotoxic agent. Their global metabolic profiling was assessed by 1H-NMR spectroscopy. A total of 37 metabolites were identified with the use of two-dimensional (2D) homo- and hetero-nuclear NMR experiments. Multivariate data analysis monitored the metabolic variability of gut microbiota and probed to biomarkers potentially associated with the health-promoting effects of edible mushrooms.


Asunto(s)
Agaricales/química , Productos Biológicos/farmacología , Heces/microbiología , Fermentación , Sustancias Protectoras/farmacología , Productos Biológicos/química , Células CACO-2 , Hongos/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Metaboloma , Metabolómica/métodos , Sustancias Protectoras/química , beta-Glucanos/metabolismo
11.
Nat Immunol ; 21(1): 75-85, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844326

RESUMEN

Regulatory T (Treg) cells accumulate into tumors, hindering the success of cancer immunotherapy. Yet, therapeutic targeting of Treg cells shows limited efficacy or leads to autoimmunity. The molecular mechanisms that guide Treg cell stability in tumors remain elusive. In the present study, we identify a cell-intrinsic role of the alarmin interleukin (IL)-33 in the functional stability of Treg cells. Specifically, IL-33-deficient Treg cells demonstrated attenuated suppressive properties in vivo and facilitated tumor regression in a suppression of tumorigenicity 2 receptor (ST2) (IL-33 receptor)-independent fashion. On activation, Il33-/- Treg cells exhibited epigenetic re-programming with increased chromatin accessibility of the Ifng locus, leading to elevated interferon (IFN)-γ production in a nuclear factor (NF)-κB-T-bet-dependent manner. IFN-γ was essential for Treg cell defective function because its ablation restored Il33-/- Treg cell-suppressive properties. Importantly, genetic ablation of Il33 potentiated the therapeutic effect of immunotherapy. Our findings reveal a new and therapeutically important intrinsic role of IL-33 in Treg cell stability in cancer.


Asunto(s)
Interferón gamma/inmunología , Interleucina-33/inmunología , Melanoma Experimental/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor/inmunología , Animales , Línea Celular Tumoral , Interferón gamma/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo
12.
Environ Int ; 126: 24-36, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30776747

RESUMEN

OBJECTIVES: To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS: We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS: We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS: This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.


Asunto(s)
Metilación de ADN , Leucemia Linfocítica Crónica de Células B/inducido químicamente , Bifenilos Policlorados/toxicidad , Adulto , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Suecia
13.
Sci Rep ; 9(1): 746, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679748

RESUMEN

PCBs are classified as xenoestrogens and carcinogens and their health risks may be sex-specific. To identify potential sex-specific responses to PCB-exposure we established gene expression profiles in a population study subdivided into females and males. Gene expression profiles were determined in a study population consisting of 512 subjects from the EnviroGenomarkers project, 217 subjects who developed lymphoma and 295 controls were selected in later life. We ran linear mixed models in order to find associations between gene expression and exposure to PCBs, while correcting for confounders, in particular distribution of white blood cells (WBC), as well as random effects. The analysis was subdivided according to sex and development of lymphoma in later life. The changes in gene expression as a result of exposure to the six studied PCB congeners were sex- and WBC type specific. The relatively large number of genes that are significantly associated with PCB-exposure in the female subpopulation already indicates different biological response mechanisms to PCBs between the two sexes. The interaction analysis between different PCBs and WBCs provides only a small overlap between sexes. In males, cancer-related pathways and in females immune system-related pathways are identified in association with PCBs and WBCs. Future lymphoma cases and controls for both sexes show different responses to the interaction of PCBs with WBCs, suggesting a role of the immune system in PCB-related cancer development.


Asunto(s)
Carcinógenos/toxicidad , Contaminantes Ambientales/toxicidad , Neoplasias/genética , Bifenilos Policlorados/toxicidad , Transcriptoma/efectos de los fármacos , Monitoreo del Ambiente , Femenino , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/patología , Leucocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Neoplasias/inducido químicamente , Caracteres Sexuales , Transcriptoma/genética , Xenobióticos/toxicidad
14.
Int J Obes (Lond) ; 42(12): 2022-2035, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29713043

RESUMEN

BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction. METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population. RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P < 1.6×10-3) and one intergenic locus on chromosome 1 was inversely associated with myocardial infarction (P < 1.25×10-3), independently of obesity and established risk factors. CONCLUSION: Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could offer clues as to underlying biological mechanisms.


Asunto(s)
Adiposidad/genética , Metilación de ADN/genética , Epigenómica/métodos , Infarto del Miocardio , Neoplasias , Obesidad , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Leucocitos Mononucleares/química , Infarto del Miocardio/epidemiología , Infarto del Miocardio/genética , Neoplasias/epidemiología , Neoplasias/genética , Obesidad/epidemiología , Obesidad/genética
15.
Int J Cancer ; 143(6): 1335-1347, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29667176

RESUMEN

Recent prospective studies have shown that dysregulation of the immune system may precede the development of B-cell lymphomas (BCL) in immunocompetent individuals. However, to date, the studies were restricted to a few immune markers, which were considered separately. Using a nested case-control study within two European prospective cohorts, we measured plasma levels of 28 immune markers in samples collected a median of 6 years before diagnosis (range 2.01-15.97) in 268 incident cases of BCL (including multiple myeloma [MM]) and matched controls. Linear mixed models and partial least square analyses were used to analyze the association between levels of immune marker and the incidence of BCL and its main histological subtypes and to investigate potential biomarkers predictive of the time to diagnosis. Linear mixed model analyses identified associations linking lower levels of fibroblast growth factor-2 (FGF-2 p = 7.2 × 10-4 ) and transforming growth factor alpha (TGF-α, p = 6.5 × 10-5 ) and BCL incidence. Analyses stratified by histological subtypes identified inverse associations for MM subtype including FGF-2 (p = 7.8 × 10-7 ), TGF-α (p = 4.08 × 10-5 ), fractalkine (p = 1.12 × 10-3 ), monocyte chemotactic protein-3 (p = 1.36 × 10-4 ), macrophage inflammatory protein 1-alpha (p = 4.6 × 10-4 ) and vascular endothelial growth factor (p = 4.23 × 10-5 ). Our results also provided marginal support for already reported associations between chemokines and diffuse large BCL (DLBCL) and cytokines and chronic lymphocytic leukemia (CLL). Case-only analyses showed that Granulocyte-macrophage colony stimulating factor levels were consistently higher closer to diagnosis, which provides further evidence of its role in tumor progression. In conclusion, our study suggests a role of growth-factors in the incidence of MM and of chemokine and cytokine regulation in DLBCL and CLL.


Asunto(s)
Biomarcadores/sangre , Linfoma de Células B Grandes Difuso/sangre , Mieloma Múltiple/sangre , Adulto , Anciano , Estudios de Casos y Controles , Quimiocina CCL7/sangre , Quimiocina CX3CL1/sangre , Europa (Continente) , Femenino , Factor 2 de Crecimiento de Fibroblastos/sangre , Estudios de Seguimiento , Humanos , Incidencia , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/epidemiología , Linfoma de Células B Grandes Difuso/inmunología , Masculino , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/epidemiología , Mieloma Múltiple/inmunología , Análisis Multivariante , Pronóstico , Estudios Prospectivos , Factor de Crecimiento Transformador alfa/sangre , Factor A de Crecimiento Endotelial Vascular/sangre
16.
Eur J Nutr ; 57(1): 209-218, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27655526

RESUMEN

PURPOSE: The study assessed whether diet and adherence to cancer prevention guidelines during pregnancy were associated with micronucleus (MN) frequency in mothers and newborns. MN is biomarkers of early genetic effects that have been associated with cancer risk in adults. METHODS: A total of 188 mothers and 200 newborns from the Rhea cohort (Greece) were included in the study. At early-mid pregnancy, we conducted personal interviews and a validated food frequency questionnaire was completed. With this information, we constructed a score reflecting adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention guidelines on diet, physical activity and body fatness. At delivery, maternal and/or cord blood was collected to measure DNA and hemoglobin adducts of dietary origin and frequencies of MN in binucleated and mononucleated T lymphocytes (MNBN and MNMONO). RESULTS: In mothers, higher levels of red meat consumption were associated with increased MNBN frequency [2nd tertile IRR = 1.34 (1.00, 1.80), 3rd tertile IRR = 1.33 (0.96, 1.85)] and MNMONO frequency [2nd tertile IRR = 1.53 (0.84, 2.77), 3rd tertile IRR = 2.69 (1.44, 5.05)]. The opposite trend was observed for MNBN in newborns [2nd tertile IRR = 0.64 (0.44, 0.94), 3rd tertile IRR = 0.68 (0.46, 1.01)], and no association was observed with MNMONO. Increased MN frequency in pregnant women with high red meat consumption is consistent with previous knowledge. CONCLUSIONS: Our results also suggest exposure to genotoxics during pregnancy might affect differently mothers and newborns. The predictive value of MN as biomarker for childhood cancer, rather than adulthood, remains unclear. With few exceptions, the association between maternal carcinogenic exposures during pregnancy and childhood cancer or early biologic effect biomarkers remains poorly understood.


Asunto(s)
Dieta , Micronúcleos con Defecto Cromosómico/estadística & datos numéricos , Neoplasias/genética , Linfocitos T/ultraestructura , Adulto , Biomarcadores de Tumor/genética , Carcinógenos/administración & dosificación , Exposición a Riesgos Ambientales , Femenino , Sangre Fetal/citología , Grecia , Humanos , Recién Nacido , Masculino , Exposición Materna , Intercambio Materno-Fetal , Madres , Neoplasias/prevención & control , Embarazo , Efectos Tardíos de la Exposición Prenatal , Carne Roja/efectos adversos
17.
BMC Genomics ; 18(1): 728, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28903739

RESUMEN

BACKGROUND: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance. RESULTS: We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were diagnosed with CLL 2.0-15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes (Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL. The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content, generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous genes that encode for transcription factors, especially members of the homeobox family, while differentially expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p and miR-155-5p. CONCLUSIONS: Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than 10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early molecular alterations with a pathogenetic potential.


Asunto(s)
Biomarcadores de Tumor , Perfilación de la Expresión Génica , Leucemia Linfocítica Crónica de Células B , Biomarcadores de Tumor/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , MicroARNs/genética , Pronóstico , Factores de Tiempo , Humanos
18.
Environ Int ; 108: 127-136, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28843141

RESUMEN

Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Contaminación del Aire , Metilación de ADN/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Enfermedades Cardiovasculares/inducido químicamente , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Epigenómica , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Material Particulado/análisis , Estudios Prospectivos , Hollín/análisis , Población Blanca
19.
Hum Mol Genet ; 26(16): 3221-3231, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28535255

RESUMEN

Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea have been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation. To investigate if DNA methylation in blood is associated with coffee and tea consumption, we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed. After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated with men or with the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption.


Asunto(s)
Café , Metilación de ADN , , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cafeína/administración & dosificación , Cafeína/sangre , Estudios de Cohortes , ADN/sangre , Estradiol/sangre , Etnicidad/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Población Blanca/genética
20.
Epidemiology ; 28(3): 320-328, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28151741

RESUMEN

BACKGROUND: We hypothesize that biological perturbations due to exposure to ambient air pollution are reflected in gene expression levels in peripheral blood mononuclear cells. METHODS: We assessed the association between exposure to ambient air pollution and genome-wide gene expression levels in peripheral blood mononuclear cells collected from 550 healthy subjects participating in cohorts from Italy and Sweden. Annual air pollution estimates of nitrogen oxides (NOx) at time of blood collection (1990-2006) were available from the ESCAPE study. In addition to univariate analysis and two variable selection methods to investigate the association between expression and exposure to NOx, we applied gene set enrichment analysis to assess overlap between our most perturbed genes and gene sets hypothesized to be related to air pollution and cigarette smoking. Finally, we assessed associations between NOx and CpG island methylation at the identified genes. RESULTS: Annual average NOx exposure in the Italian and Swedish cohorts was 94.2 and 6.7 µg/m, respectively. Long-term exposure to NOx was associated with seven probes in the Italian cohort and one probe in the Swedish (and combined) cohorts. For genes AHCYL2 and MTMR2, changes were also seen in the methylome. Genes hypothesized to be downregulated due to cigarette smoking were enriched among the most strongly downregulated genes from our study. CONCLUSION: This study provides evidence of subtle changes in gene expression related to exposure to long-term NOx. On a global level, the observed changes in the transcriptome may indicate similarities between air pollution and tobacco induced changes in the transcriptome.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Metilación de ADN , Expresión Génica , Óxidos de Nitrógeno , Adulto , Contaminantes Atmosféricos , Neoplasias de la Mama/epidemiología , Estudios de Cohortes , Islas de CpG , Femenino , Voluntarios Sanos , Humanos , Inflamación , Interleucina-10/inmunología , Interleucina-2/inmunología , Interleucina-8/inmunología , Italia/epidemiología , Linfoma/epidemiología , Masculino , Persona de Mediana Edad , Fumar/epidemiología , Fumar/genética , Fumar/inmunología , Suecia/epidemiología , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA