Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893999

RESUMEN

The electric vehicle (EV) industry challenges battery joining technologies by requiring higher energy density both by mass and volume. Improving the energy density via new battery chemistry would be the holy grail but is seriously hindered and progresses slowly. In the meantime, alternative ways, such as implementing more efficient cell packaging by minimising the electrical resistance of joints, are of primary focus. In this paper, we discuss the challenges associated with the electrical characterisation of laser-soldered joints in general, and the minimisation of their resistive losses, in particular. In order to assess the impact of joint resistance on the overall resistance of the sample, the alteration in resistance was monitored as a function of voltage probe distance and modelled by finite element simulation. The experimental measurements showed two different regimes: one far from the joint area and another in its vicinity and within the joint cross-section. The presented results confirm the importance of the thickness of the filler material, the effective and total soldered area, and the area and position of the voids within the total soldered area in determining the electrical resistance of joints.

2.
Int J Pharm ; 660: 124377, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914351

RESUMEN

Lidocaine is generally recognized and preferred for local anaesthesia, but in addition, studies have described additional benefits of lidocaine in cancer therapy, inflammation reduction, and wound healing. These properties contribute to its increasing importance in dermatological applications, and not only in pain relief but also in other potential therapeutic outcomes. Therefore, the purpose of our study was to enhance lidocaine delivery through the skin. A stable nanostructured lipid carrier (NLC), as a passive permeation enhancer, was developed using a 23 full factorial design. The nanosystems were characterized by crystallinity behaviour, particle size, zeta potential, encapsulation efficiency measurements, and one of them was selected for further investigation. Then, NLC gel was formulated for dermal application and compared to a traditional dermal ointment in terms of physicochemical (rheological behaviour) and biopharmaceutical (qualitative Franz diffusion and quantitative Raman investigations) properties. The study also examined the use of 3D printed solid microneedles as active permeation enhancers for these systems, offering a minimally invasive approach to enhance transdermal drug delivery. By actively facilitating drug permeation through the skin, microneedles can complement the passive transport achieved by NLCs, thereby providing an innovative and synergistic approach to improving lidocaine delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA