Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Appl Biosci (Basel) ; 3(2): 233-249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835931

RESUMEN

Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.

2.
Cell Transplant ; 31: 9636897221123515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36169034

RESUMEN

One promising strategy in cell therapies for Parkinson's disease (PD) is to harness a patient's own cells to provide neuroprotection in areas of the brain affected by neurodegeneration. No treatment exists to replace cells in the brain. Thus, our goal has been to support sick neurons and slow neurodegeneration by transplanting living repair tissue from the peripheral nervous system into the substantia nigra of those with PD. Our group has pioneered the transplantation of transection-activated sural nerve fascicles into the brain of human subjects with PD. Our experience in sural nerve transplantation has supported the safety and feasibility of this approach. As part of a paradigm to assess the reparative properties of human sural nerve following a transection injury, we collected nerve tissue approximately 2 weeks after sural nerve transection for immunoassays from 15 participants, and collected samples from two additional participants for single nuclei RNA sequencing. We quantified the expression of key neuroprotective and select anti-apoptotic genes along with their corresponding protein levels using immunoassays. The single nuclei data clustered into 10 distinctive groups defined on the basis of previously published cell type-specific genes. Transection-induced reparative peripheral nerve tissue showed RNA expression of neuroprotective factors and anti-apoptotic factors across multiple cell types after nerve injury induction. Key proteins of interest (BDNF, GDNF, beta-NGF, PDGFB, and VEGF) were upregulated in reparative tissue. These results provide insight on this repair tissue's utility as a neuroprotective cell therapy.


Asunto(s)
Factor de Crecimiento Nervioso , Enfermedad de Parkinson , Factor Neurotrófico Derivado del Encéfalo , Tratamiento Basado en Trasplante de Células y Tejidos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Enfermedad de Parkinson/terapia , Proteínas Proto-Oncogénicas c-sis , ARN , Factor A de Crecimiento Endotelial Vascular
3.
BMJ Neurol Open ; 4(2): e000301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949912

RESUMEN

Objective: To evaluate the interim feasibility, safety and clinical measures data of direct delivery of regenerating peripheral nerve tissue (PNT) to the substantia nigra (SN) in participants with Parkinson's disease (PD). Methods: Eighteen (13 men/5 women) participants were unilaterally implanted with PNT to the SN, contralateral to the most affected side during the same surgery they were receiving deep brain stimulation (DBS) surgery. Autologous PNT was collected from the sural nerve. Participants were followed for safety and clinical outcomes for 2 years (including off-state Unified Parkinson's Disease Rating Scale (UPDRS) Part III assessments) with study visits every 6 months. Results: All 18 participants scheduled to receive PNT implantation received targeted delivery to the SN in addition to their DBS. All subjects were discharged the following day except for two: post-op day 2; post-op day 3. The most common study-related adverse events were hypoaesthesia and hyperaesthesias to the lateral aspect of the foot and ankle of the biopsied nerve (6 of 18 participants experienced). Clinical measures did not identify any hastening of PD measures providing evidence of safety and tolerability. Off-state UPDRS Part III mean difference scores were reduced at 12 months compared with baseline (difference=-8.1, 95% CI -2.4 to -13.9 points, p=0.005). No complications involving dyskinesias were observed. Conclusions: Targeting the SN for direct delivery of PNT was feasible with no serious adverse events related to the study intervention. Interim clinical outcomes show promising results meriting continued examination of this investigational approach. Trial registration number: NCT02369003.

4.
J Neurosci Methods ; 378: 109643, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691412

RESUMEN

BACKGROUND: Limitations have previously existed for the use of brain infusion catheters with extended delivery port designs to achieve larger distribution volumes using convection-enhanced delivery (CED), due to poor transmittance of materials and uncontrolled backflow. The goal of this study was to evaluate a novel brain catheter that has been designed to allow for extended delivery and larger distribution volumes with limited backflow of fluid. It was characterized using a broad range of therapeutic pore sizes both for transmittance across the membranes to address possible occlusion and for distribution in short term infusion studies, both in-vitro in gels and in-vivo in canines. METHODS: Brain catheters with pore sizes of 10, 12, 15, 20 and 30 µm were evaluated using three infusates prepared in 0.9% sterile saline with diameters approximating 2, 5, and 30 nm, respectively. Magnevist™ was chosen as the small molecule infusate to mimic low-molecular weight therapeutics. Galbumin™ served as a surrogate for an assortment of proteins used for brain cancer and Parkinson's disease. Gadoluminate™ was used to assess the distribution of large therapeutics, such as adeno-associated viral particles and synthetic nanoparticles. The transmittance of the medium and large tracer particles through catheters of different pore size (15, 20 and 30 µm) was measured by MRI and compared with the measured concentration of the control. Infusions into 0.2% agarose gels were performed in order to evaluate differences in transmittance and distribution of the small, medium, and large tracer particles through catheters with different pore sizes (10, 12, 15, 20 and 30 µm). In-vivo infusions were performed in the canine in order to evaluate the ability of the catheter to infuse the small, medium, and large tracer particles into brain parenchyma at high flow rates through catheters with different pore sizes (10, 15, and 20 µm). Two catheters were stereotactically inserted into the brain for infusion, one per hemisphere, in each animal (N = 6). RESULTS: The transmittance of Galbumin and Gadoluminate across the catheter membrane surface was 100% to within the accuracy of the measurements. There was no evidence of any blockage or retardation of any of the infusates. Catheter pore size did not appear to significantly affect transmittance or distribution in gels of any of the molecule sizes in the range of catheter pore sizes tested. There were differences in the distributions between the different tracer molecules: Magnevist produced relatively large distributions, followed by Gadoluminate and Galbumin. We observed no instances of uncontrolled backflow in a total of 12 in-vivo infusions. In addition, several of the infusions resulted in substantial amounts remaining in tissue. We expect the in-tissue distributions to be substantially improved in the larger human brain. COMPARISON WITH EXISTING METHODS: The new porous brain catheter performed well in terms of both backflow and intraparenchymal infusion of molecules of varying size in the canine brain under CED flow conditions. CONCLUSIONS: Overall, the data presented in this report support that the novel porous brain catheter can deliver therapeutics of varying sizes at high infusion rates in the brain parenchyma, and resist backflow that can compromise the efficacy of CED therapy. Additional work is needed to further characterize the brain catheter, including animal toxicity studies of chronically implanted brain catheters to lay the foundation for its use in the clinic.


Asunto(s)
Catéteres , Sistemas de Liberación de Medicamentos , Animales , Encéfalo/diagnóstico por imagen , Convección , Perros , Sistemas de Liberación de Medicamentos/métodos , Geles , Humanos , Imagen por Resonancia Magnética , Porosidad
5.
J Biotechnol ; 342: 28-35, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648893

RESUMEN

The dopamine transporter (DAT) is targeted in substance use disorders (SUDs), and "non-classical"" DAT inhibitors with low abuse potential are therapeutic candidates. Lobinaline, from Lobelia cardinalis, is an atypical DAT inhibitor lead. Chemical synthesis of lobinaline is challenging; thus, "target-directed evolution" was used for lead optimization. A target protein is expressed in plant cells, and a mutant cell population is selected under conditions where target protein functional inhibition confers a survival advantage. Surviving mutants are "mined" for the targeted activity. Applied to a mutant L. cardinalis cell population expressing the human DAT, we identified 20 mutants overproducing DAT inhibitors. Microanalysis prioritized novel lobinaline derivatives, and we first investigated the more water-soluble lobinaline N-oxide. It inhibited rat synaptosomal [3H]DA uptake with an IC50 similar to lobinaline. Against repeated DA microinjections into the rat striatum, lobinaline produced transient DA clearance reductions. In contrast, lobinaline N-oxide prolongingly increased DA peak amplitudes, particularly in the ventral striatum. Lobinaline N-oxide also produced complex changes in post-peak DA clearance inconsistent with simple DAT inhibition. This unusual DAT interaction may prove therapeutically useful for treating SUDs. This study demonstrates the value of target-directed evolution of plant cells for optimizing lead compounds difficult to synthesize chemically.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Lobelia , Animales , Cuerpo Estriado , Dopamina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Lobelia/genética , Ratas , Sinaptosomas
6.
Brain Sci ; 11(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921079

RESUMEN

BACKGROUND: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna. OBJECTIVES: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson's disease. METHODS: Computerized gait and balance evaluations were performed without medication, and stimulation was in the off state for at least 12 h to best assess the role of APNG implantation alone. We hypothesized that APNG might improve gait and balance deficits associated with PD. RESULTS: While people with a degenerative movement disorder typically worsen with time, none of the gait parameters significantly changed across visits in this 24 month study. The postural stability item in the UPDRS did not worsen from baseline to the 24-month follow-up. However, we measured gait and balance improvements in the two most affected individuals, who had moderate PD. In these two individuals, we observed an increase in gait velocity and step length that persisted over 6 and 24 months. CONCLUSIONS: Participants did not show worsening of gait and balance performance in the off therapy state two years after surgery, while the two most severely affected participants showed improved performance. Further studies may better address the long-term maintanenace of these results.

7.
J Neurosurg ; 129(6): 1550-1561, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451447

RESUMEN

OBJECTIVECurrently, there is no treatment that slows or halts the progression of Parkinson's disease. Delivery of various neurotrophic factors to restore dopaminergic function has become a focus of study in an effort to fill this unmet need for patients with Parkinson's disease. Schwann cells provide a readily available source of such factors. This study presents a 12-month evaluation of safety and feasibility, as well as the clinical response, of implanting autologous peripheral nerve grafts into the substantia nigra of patients with Parkinson's disease at the time of deep brain stimulation (DBS) surgery.METHODSStandard DBS surgery targeting the subthalamic nucleus was performed in 8 study participants. After DBS lead implantation, a section of the sural nerve containing Schwann cells was harvested and unilaterally grafted to the substantia nigra. Adverse events were continually monitored. Baseline clinical data were obtained during standard preoperative evaluations. Clinical outcome data were obtained with postoperative clinical evaluations, neuropsychological testing, and MRI at 1 year after surgery.RESULTSAll 8 participants were implanted with DBS systems and grafts. Adverse event profiles were comparable to those of standard DBS surgery with the exception of 1 superficial infection at the sural nerve harvest site. Three participants also reported numbness in the distribution of the sural nerve distal to the harvest site. Motor scores on Unified Parkinson's Disease Rating Scale (UPDRS) part III while the participant was off therapy at 12 months improved from baseline (mean ± SD 25.1 ± 15.9 points at 12 months vs 32.5 ± 9.7 points at baseline). An analysis of the lateralized UPDRS scores also showed a greater overall reduction in scores on the side contralateral to the graft.CONCLUSIONSPeripheral nerve graft delivery to the substantia nigra at the time of DBS surgery is feasible and safe based on the results of this initial pilot study. Clinical outcome data from this phase I trial suggests that grafting may have some clinical benefit and certainly warrants further study to determine if this is an efficacious and neurorestorative therapy.Clinical trial registration no.: NCT01833364 (clinicaltrials.gov).


Asunto(s)
Estimulación Encefálica Profunda , Transferencia de Nervios/métodos , Enfermedad de Parkinson/cirugía , Nervios Periféricos/trasplante , Sustancia Negra/cirugía , Anciano , Electrodos Implantados , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Transferencia de Nervios/efectos adversos , Pruebas Neuropsicológicas , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/psicología , Proyectos Piloto , Sustancia Negra/diagnóstico por imagen , Resultado del Tratamiento
8.
Brain Res ; 1672: 10-17, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28705715

RESUMEN

Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary excitatory neurotransmitter. Mice treated with DOX (25mg/kg i.p.) were subjected to in vivo recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, amperometric recordings measured parameters of extracellular glutamate clearance and potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) of the hippocampus. By 24h post-DOX injection, glutamate uptake was 45% slower in the FC in comparison to saline-treated mice. In the DG, glutamate took 48% longer to clear than saline-treated mice. Glutamate overflow in the FC was similar between treatment groups, however, it was significantly increased in the DG of DOX treated mice. MWM data indicated that a single dose of DOX impaired swim speed without impacting total length traveled. These data indicate that systemic DOX treatment changes glutamate neurotransmission in key nuclei associated with cognitive function within 24h, without a lasting impact on spatial learning and memory. Understanding the functional effects of DOX on glutamate neurotransmission may help us understand and prevent some of the debilitating side effects of chemotherapeutic treatment in cancer survivors.


Asunto(s)
Doxorrubicina/farmacología , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Animales , Cognición/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Doxorrubicina/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Aprendizaje Espacial/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Lóbulo Temporal
9.
J Neurosci ; 37(25): 6132-6148, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28559377

RESUMEN

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Astrocitos , Calcineurina/genética , Factores de Transcripción NFATC/genética , Red Nerviosa/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores , Silenciador del Gen , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
10.
J Neurosurg ; 126(4): 1140-1147, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27153166

RESUMEN

OBJECTIVE One avenue of intense efforts to treat Parkinson's disease (PD) involves the delivery of neurotrophic factors to restore dopaminergic cell function. A source of neurotrophic factors that could be used is the Schwann cell from the peripheral nervous system. The authors have begun an open-label safety study to examine the safety and feasibility of implanting an autologous peripheral nerve graft into the substantia nigra of PD patients undergoing deep brain stimulation (DBS) surgery. METHODS Multistage DBS surgery targeting the subthalamic nucleus was performed using standard procedures in 8 study participants. After the DBS leads were implanted, a section of sural nerve containing Schwann cells was excised and unilaterally delivered into the area of the substantia nigra. Adverse events were continuously monitored. RESULTS Eight of 8 participants were implanted with DBS systems and grafts. Adverse event profiles were comparable to those of standard DBS surgery. Postoperative MR images did not reveal edema, hemorrhage, or significant signal changes in the graft target region. Three participants reported a patch of numbness on the outside of the foot below the sural nerve harvest site. CONCLUSIONS Based on the safety outcome of the procedure, targeted peripheral nerve graft delivery to the substantia nigra at the time of DBS surgery is feasible and may provide a means to deliver neurorestorative therapy. Clinical trial registration no.: NCT01833364 ( clinicaltrials.gov ).


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Nervios Periféricos/trasplante , Sustancia Negra/cirugía , Estimulación Encefálica Profunda/métodos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Resultado del Tratamiento
11.
Fitoterapia ; 111: 109-23, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27105955

RESUMEN

In screening a library of plant extracts from ~1000 species native to the Southeastern United States, Lobelia cardinalis was identified as containing nicotinic acetylcholine receptor (nicAchR) binding activity which was relatively non-selective for the α4ß2- and α7-nicAchR subtypes. This nicAchR binding profile is atypical for plant-derived nicAchR ligands, the majority of which are highly selective for α4ß2-nicAchRs. Its potential therapeutic relevance is noteworthy since agonism of α4ß2- and α7-nicAchRs is associated with anti-inflammatory and neuroprotective properties. Bioassay-guided fractionation of L. cardinalis extracts led to the identification of lobinaline, a complex binitrogenous alkaloid, as the main source of the unique nicAchR binding profile. Purified lobinaline was a potent free radical scavenger, displayed similar binding affinity at α4ß2- and α7-nicAchRs, exhibited agonist activity at nicAchRs in SH-SY5Y cells, and inhibited [(3)H]-dopamine (DA) uptake in rat striatal synaptosomes. Lobinaline significantly increased fractional [(3)H] release from superfused rat striatal slices preloaded with [(3)H]-DA, an effect that was inhibited by the non-selective nicAchR antagonist mecamylamine. In vivo electrochemical studies in urethane-anesthetized rats demonstrated that lobinaline locally applied in the striatum significantly prolonged clearance of exogenous DA by the dopamine transporter (DAT). In contrast, lobeline, the most thoroughly investigated Lobelia alkaloid, is an α4ß2-nicAchR antagonist, a poor free radical scavenger, and is a less potent DAT inhibitor. These previously unreported multifunctional effects of lobinaline make it of interest as a lead to develop therapeutics for neuropathological disorders that involve free radical generation, cholinergic, and dopaminergic neurotransmission. These include neurodegenerative conditions, such as Parkinson's disease, and drug abuse.


Asunto(s)
Alcaloides/farmacología , Lobelia/química , Antagonistas Nicotínicos/farmacología , Quinolinas/farmacología , Animales , Línea Celular , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Ensayos Analíticos de Alto Rendimiento , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
12.
Biosens Bioelectron ; 74: 512-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26183072

RESUMEN

Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states.


Asunto(s)
Adenosina/metabolismo , Conductometría/instrumentación , Ensayo de Inmunoadsorción Enzimática/instrumentación , Microelectrodos , Neuronas/metabolismo , Análisis de Matrices Tisulares/instrumentación , Animales , Técnicas Biosensibles/instrumentación , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Equipo Reutilizado , Líquido Extracelular/metabolismo , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley
13.
J Neurosurg ; 122(5): 1042-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25748305

RESUMEN

Deep brain stimulation (DBS) is approved for several clinical indications; however, the sequencing of DBS surgery and the timeline for implementing stimulation therapy are not standardized. In over 140 cases so far, the authors have reversed the sequencing for staged implantation of DBS systems that was conducive to minimizing patient anxiety and discomfort while providing the opportunity to shorten the time between implantation and programming for therapeutic management of symptoms. Stage I was performed with the patient under general anesthesia and consisted of implantation of the pulse generator and lead extensions and placement of the bur holes. Stage II was completed 1-7 days later, using only local anesthesia, and included stereotactic frame-based microelectrode recordings, semi-microstimulation and macrostimulation, and testing and placement of the stimulating electrodes. Stage I lasted approximately 90 minutes, whereas Stage II lasted approximately 230 minutes. All patients tolerated the procedures and received a complete implanted system. Deep brain stimulation therapy was typically initiated on the same day as lead implantation. When sequencing was reversed and bur holes were placed during the first stage while a patient was under general anesthesia, the patient was able to tolerate the second awake stage and was able to begin stimulation therapy within 48 hours of the second stage.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven
14.
ACS Chem Neurosci ; 4(5): 721-8, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23650904

RESUMEN

Glutaraldehyde is widely used as a cross-linking agent for enzyme immobilization onto microelectrodes. Recent studies and prior reports indicate changes in enzyme activity and selectivity with certain glutaraldehyde cross-linking procedures that may jeopardize the performance of microelectrode recordings and lead to falsely elevated responses in biological systems. In this study, the sensitivity of glutaraldehyde cross-linked glutamate oxidase-based microelectrode arrays to 22 amino acids was tested and compared to glutamate. As expected, responses to electroactive amino acids (Cys, Tyr, Trp) were detected at both nonenzyme-coated and enzyme-coated microelectrodes sites, while the remaining amino acids yielded no detectable responses. Electroactive amino acids were effectively blocked with a m-phenylene diamine (mPD) layer and, subsequently, no responses were detected. Preliminary results on the use of poly(ethylene glycol) diglycidyl ether (PEGDE) as a potentially more reliable cross-linking agent for the immobilization of glutamate oxidase onto ceramic-based microelectrode arrays are reported and show no significant advantages over glutaraldehyde as we observe comparable selectivities and responses. These results support that glutaraldehyde-cross-linked glutamate oxidase retains sufficient enzyme specificity for accurate in vivo brain measures of tonic and phasic glutamate levels when immobilized using specific "wet" coating procedures.


Asunto(s)
Aminoácido Oxidorreductasas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Enzimas Inmovilizadas/efectos de los fármacos , Ácido Glutámico/análisis , Glutaral/farmacología , Aminoácido Oxidorreductasas/fisiología , Técnicas Biosensibles , Enzimas Inmovilizadas/fisiología , Microelectrodos
15.
Neuropeptides ; 45(3): 213-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21507484

RESUMEN

Recently, a small 11-amino acid amidated peptide, dopamine neuron stimulating peptide-11 (DNSP-11), was shown to exert neurotrophic-like actions on primary dopaminergic neurons and in parkinsonian rat models. This suggests smaller neurotrophic-like molecules may be deliverable and modifiable for therapeutic use. Here we evaluate the molecular and cellular protection properties of DNSP-11 and two other amidated-peptides, a 5-mer (DNSP-5) and a 17-mer (DNSP-17), hypothesized to be endoproteolytically processed from the pro- and mature glial cell line-derived neurotrophic factor (GDNF) protein sequence, respectively. Far-UV circular dichroism spectra show that the three DNSPs are soluble and act independently in vitro. Reverse phase HPLC and mass spectrometry analysis show that the three peptides are stable for one month at a variety of storage and experimental conditions. To gain insight into their biodistribution properties in the brain, we used affinity chromatography to show that DNSP-17 binds heparin equally as tight as GDNF, whereas DNSP-5 and DNSP-11 do not bind heparin, which should facilitate their delivery in vivo. Finally, we present data showing that DNSP-11 provides dose-dependent protection of HEK-293 cells from staurosporine and 3-nitropropionate (3-NP) cytotoxicity, thereby supporting its broad mitochondrial-protective properties.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Péptidos/metabolismo , Animales , Caspasa 3/metabolismo , Convulsivantes/farmacología , Inhibidores Enzimáticos/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Células HEK293/efectos de los fármacos , Heparina/metabolismo , Humanos , Nitrocompuestos/farmacología , Péptidos/química , Péptidos/genética , Propionatos/farmacología , Ratas , Estaurosporina/farmacología
16.
J Pharmacol Exp Ther ; 338(1): 240-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21464332

RESUMEN

Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α(2)δ subunit of voltage-sensitive Ca(2+) channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K(+)-evoked glutamate release without affecting basal glutamate levels. PGB (0.1-100 µM) exhibited concentration-dependent inhibition of K(+)-evoked glutamate release with an IC(50) value of 5.3 µM. R-(-)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K(+)-evoked glutamate release. The decrease of K(+)-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α(2)δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α(2)δ-1 (subtype) subunit of VSCC, PGB did not affect K(+)-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α(2)δ-1 subunit of VSCC appears to mediate this effect.


Asunto(s)
Aminas/farmacología , Canales de Calcio/fisiología , Ácidos Ciclohexanocarboxílicos/farmacología , Ácido Glutámico/metabolismo , Neocórtex/metabolismo , Ácido gamma-Aminobutírico/análogos & derivados , Animales , Canales de Calcio/genética , Canales de Calcio Tipo L , Gabapentina , Ácido Glutámico/fisiología , Humanos , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Microelectrodos , Neocórtex/efectos de los fármacos , Mutación Puntual , Pregabalina , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/farmacología
17.
J Neurochem ; 115(6): 1608-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20969570

RESUMEN

Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼ 40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω-conotoxin (MVIIC; ∼ 50%; calcium channel blocker), and the mGluR(2/3) agonist, LY379268 (∼ 20%), and a significant increase with the mGluR(2/3) antagonist LY341495 (∼ 40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-ß-benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼ 120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically -evoked event is entirely neuronally derived.


Asunto(s)
Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Espacio Extracelular/efectos de los fármacos , Masculino , Microdiálisis/métodos , Microelectrodos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Bloqueadores de los Canales de Sodio/farmacología , Factores de Tiempo
18.
Synapse ; 63(12): 1069-82, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19637277

RESUMEN

These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the alpha 7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intracortical infusions of the nonselective nicotinic agonist nicotine (12.0 mM, 1.0 microg/0.4 microl) or the selective alpha 7 agonist choline (2.0 mM/0.4 microl). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pretreated with the alpha 7 antagonist, alpha-bungarotoxin (alpha-BGT, 10 microM), or kynurenine (10 microM) the precursor of the astrocyte-derived, negative allosteric alpha 7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 +/- 0.6 microM) that were cleared to baseline levels in 493 +/- 80 seconds. Pretreatment with alpha-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 +/- 0.9 microM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 +/- 6 seconds) and pretreatment with alpha-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both alpha 7- and non-alpha 7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on alpha 7 full and partial agonists as therapeutic agents in the treatment of cortically mediated cognitive deficits in schizophrenia.


Asunto(s)
Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Bungarotoxinas/farmacología , Calibración , Cateterismo , Colina/farmacología , Electrodos Implantados , Quinurenina/farmacología , Masculino , Microelectrodos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , Receptor Nicotínico de Acetilcolina alfa 7
19.
Exp Neurol ; 219(1): 197-207, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19460370

RESUMEN

Dopamine (DA) affects GABA neuronal function in the striatum and together these neurotransmitters play a large role in locomotor function. We recently reported that unilateral striatal administration of GDNF, a growth factor that has neurotrophic effects on DA neurons and enhances DA release, bilaterally increased striatal neuron activity related to locomotion in aged rats. We hypothesized that the GDNF enhancement of DA function and resulting bilateral enhancement of striatal neuronal activity was due to prolonged bilateral changes in DA- and GABA-regulating proteins. Therefore in these studies we assessed dopamine- and GABA-regulating proteins in the striatum and substantia nigra (SN) of 24 month old Fischer 344 rats, 30 days after a single unilateral striatal delivery of GDNF. The nigrostriatal proteins investigated were the DA transporter (DAT), tyrosine hydroxylase (TH), and TH phosphorylation and were examined by blot-immunolabeling. The striatal GABA neuron-related proteins were examined by assay of the DA D1 receptor, DARPP-32, DARPP-32 Thr34 phosphorylation, and glutamic acid decarboxylase (GAD). Bilateral effects of GDNF on TH and DAT occurred only in the SN, as 30 microg GDNF increased ser19 phosphorylation, and 100 microg GDNF decreased DAT and TH protein levels. GDNF also produced bilateral changes in GAD protein in the striatum. A decrease in DARPP-32 occurred in the ipsilateral striatum, while increased D1 receptor and DARPP-32 phosphorylation occurred in the contralateral striatum. The 30 microg GDNF infusion into the lateral striatum was confined to the ipsilateral striatum and substantia nigra. Thus, long-lasting bilateral effects of GDNF on proteins regulating DA and GABA neuronal function likely alter physiological properties in neurons, some with bilateral projections, associated with locomotion. Enhanced nigrostriatal excitability and DA release by GDNF may trigger these bilateral effects.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Sustancia Negra/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Relación Dosis-Respuesta a Droga , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glutamato Descarboxilasa/efectos de los fármacos , Glutamato Descarboxilasa/metabolismo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
20.
Biosens Bioelectron ; 23(9): 1382-9, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18243683

RESUMEN

A ceramic-based microelectrode array (MEA) with enzyme coatings for the accurate measurement of acetylcholine (ACh) in brain tissues is presented. Novel design features allow for self-referencing recordings for improved limits of detection and highly selective measurements of ACh and choline (Ch), simultaneously. Design and fabrication features also result in minimal tissue damage during implantation and improved enzyme coatings due to isolated recording sites. In these studies we have used a recombinant human acetylcholinesterase enzyme coating, which has better reproducibility than other commercially available enzymes. The precisely patterned recording site dimensions, low limit of detection (0.2 micro M) and fast response time ( approximately 1s) allow for second-by-second measurements of ACh and Ch in brain tissues. An electropolymerized meta-phenylenediamine (mPD) layer was used to exclude interfering substances from being recorded at the platinum recording sites. Our studies support that the mPD layer was stable for over 24h under in vitro and in vivo recording conditions. In addition, our work supports that the current configuration of the MEAs produces a robust design, which is suited for measures of ACh and Ch in rat brain.


Asunto(s)
Acetilcolina/análisis , Química Encefálica , Cerámica/química , Colina/análisis , Microelectrodos , Animales , Masculino , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA