Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Data ; 10(1): 323, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237059

RESUMEN

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Donantes de Tejidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Genómica , Páncreas
2.
J Clin Invest ; 129(11): 4676-4681, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31369399

RESUMEN

While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain unknown. Recent evaluation of a patient with a strong family history of pancreatitis sparked us to reexamine a large kindred originally reported over 50 years ago with an autosomal dominant inheritance pattern of chronic pancreatitis, diabetes and pancreatic adenocarcinoma. Whole exome sequencing analysis identified a rare missense mutation in the gene encoding pancreas-specific protease Elastase 3B (CELA3B) that cosegregates with disease. Studies of the mutant protein in vitro, in cell lines and in CRISPR-Cas9 engineered mice indicate that this mutation causes translational upregulation of CELA3B, which upon secretion and activation by trypsin leads to uncontrolled proteolysis and recurrent pancreatitis. Although lesions in several other pancreatitic proteases have been previously linked to hereditary pancreatitis, this is the first known instance of a mutation in CELA3B and a defect in translational control contributing to this disease.


Asunto(s)
Adenocarcinoma/genética , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Mutación , Proteínas de Neoplasias/genética , Elastasa Pancreática/genética , Neoplasias Pancreáticas/genética , Pancreatitis/genética , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Animales , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/patología , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Elastasa Pancreática/biosíntesis , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Pancreatitis/enzimología , Pancreatitis/patología , Regulación hacia Arriba , Secuenciación del Exoma , Neoplasias Pancreáticas
3.
Mol Cancer Ther ; 17(12): 2702-2709, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254185

RESUMEN

Patients with pancreatic neuroendocrine tumors (PNET) commonly develop advanced disease and require systemic therapy. However, treatment options remain limited, in part, because experimental models that reliably emulate PNET disease are lacking. We therefore developed a patient-derived xenograft model of PNET (PDX-PNET), which we then used to evaluate two mTOR inhibitor drugs: FDA-approved everolimus and the investigational new drug sapanisertib. PDX-PNETs maintained a PNET morphology and PNET-specific gene expression signature with serial passage. PDX-PNETs also harbored mutations in genes previously associated with PNETs (such as MEN1 and PTEN), displayed activation of the mTOR pathway, and could be detected by Gallium-68 DOTATATE PET-CT. Treatment of PDX-PNETs with either everolimus or sapanisertib strongly inhibited growth. As seen in patients, some PDX-PNETs developed resistance to everolimus. However, sapanisertib, a more potent inhibitor of the mTOR pathway, caused tumor shrinkage in most everolimus-resistant tumors. Our PDX-PNET model is the first available, validated PDX model for PNET, and preclinical data from the use of this model suggest that sapanisertib may be an effective new treatment option for patients with PNET or everolimus-resistant PNET.


Asunto(s)
Benzoxazoles/uso terapéutico , Resistencia a Antineoplásicos , Everolimus/uso terapéutico , Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones Desnudos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Compuestos Organometálicos/química , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
4.
Channels (Austin) ; 11(6): 636-647, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29087246

RESUMEN

The ATP-sensitive potassium channel (KATP) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic ß-cells. The pancreatic KATP channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1). Loss-of-function mutations in either subunit often lead to the development of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). PHHI is a rare genetic disease and most patients present with immediate onset within the first few days after birth. In this study, we report an unusual form of PHHI, in which the index patient developed hyperinsulinemic hypoglycemia after 1 year of age. The patient failed to respond to routine medication for PHHI and underwent a complete pancreatectomy. Genotyping of the index patient and his immediate family members showed that the patient and other family members with hypoglycemic episodes carried a heterozygous novel mutation in KCNJ11 (C83T), which encodes Kir6.2 (A28V). Electrophysiological and cell biological experiments revealed that A28V hKir6.2 is a dominant-negative, loss-of-function mutation and that KATP channels carrying this mutation failed to reach the cell surface. De novo protein structure prediction indicated that this A28V mutation reoriented the ER retention motif located at the C-terminal of the hKir6.2, and this result may explain the trafficking defect caused by this point mutation. Our study is the first report of a novel form of late-onset PHHI that is caused by a dominant mutation in KCNJ11 and exhibits a defect in proper surface expression of Kir6.2.


Asunto(s)
Hiperinsulinismo Congénito/metabolismo , Mutación , Canales de Potasio de Rectificación Interna/genética , Humanos , Canales de Potasio de Rectificación Interna/metabolismo
5.
Diabetologia ; 58(11): 2582-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26290048

RESUMEN

AIMS/HYPOTHESIS: Lineage conversion of non-beta cells into insulin-producing cells has been proposed as a therapy for the cure of diabetes. Glucagon-like peptide-1 (GLP-1) and its derivatives can induce beta cell neogenesis in vitro and beta cell mass expansion in vivo, but GLP-1 signalling has not been shown to regulate cell fate decisions in vivo. We therefore tested the impact of GLP-1 receptor (GLP1R) expression on beta cell differentiation in vivo. METHODS: Mice overexpressing GLP1R in pancreatic exocrine cells were generated by Cre-mediated recombination in sex-determining region Y-box 9 (SOX9)-expressing cells and then treated with exendin-4 and/or gastrin. Histological analysis was performed to detect cellular reprogramming from the exocrine lineage into insulin-producing cells. RESULTS: Whereas no newly generated beta cells were detected in the mice treated with exendin-4 alone, treatment with gastrin only induced the conversion of exocrine cells into insulin-producing cells. Furthermore, the overexpression of GLP1R, together with gastrin and exendin-4, synergistically promoted beta cell neogenesis accompanied by the formation of islet-like clusters. These newly generated beta cells expressed beta cell specific transcription factors, such as pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). These mice showed no histological evidence of pancreatitis or pancreatic dysplasia in their acini and had normal plasma amylase levels. CONCLUSIONS/INTERPRETATION: Activation of GLP-1 and gastrin signalling induces beta cell neogenesis in the exocrine lineage without any deleterious pancreatic changes, which may lead to a potential therapy to cure diabetes by generating surrogate beta cells.


Asunto(s)
Reprogramación Celular/fisiología , Gastrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas Exocrino/metabolismo , Transducción de Señal/fisiología , Animales , Reprogramación Celular/efectos de los fármacos , Exenatida , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Páncreas Exocrino/citología , Páncreas Exocrino/efectos de los fármacos , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Ponzoñas/farmacología
6.
J Clin Invest ; 124(9): 4093-101, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25133424

RESUMEN

Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic ß cells for people with diabetes and for targeting menin-sensitive endocrine tumors.


Asunto(s)
Islotes Pancreáticos/citología , Proteínas Proto-Oncogénicas/fisiología , Proteínas ras/fisiología , Adulto , Animales , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología
7.
Cell Metab ; 15(6): 885-94, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22608007

RESUMEN

Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing ß cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of ß cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of ß cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased ß cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating ß cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in ß cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.


Asunto(s)
Adenosina-5'-(N-etilcarboxamida)/farmacología , Adenosina/fisiología , Células Secretoras de Insulina/metabolismo , Agonistas del Receptor Purinérgico P1/farmacología , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/uso terapéutico , Animales , Glucemia , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Evaluación Preclínica de Medicamentos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Larva/efectos de los fármacos , Ratones , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/fisiología , Agonistas del Receptor Purinérgico P1/uso terapéutico , Receptor de Adenosina A2A/metabolismo , Regeneración , Pez Cebra , Proteínas de Pez Cebra/metabolismo
8.
PLoS Genet ; 8(1): e1002449, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253604

RESUMEN

The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27's effect on the insulin promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels, while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of insulin production.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/genética , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Mol Endocrinol ; 25(12): 2106-18, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21980074

RESUMEN

The phosphatidylinositol-3-kinase-dependent kinase, Akt2, plays a central role in mediating insulin effects in glucose-metabolizing tissues. Akt2 knockout mice display insulin resistance with a reactive increase in pancreatic islet mass and hyperinsulinemia. The related phosphatidylinositol-3-kinase-dependent kinase, serum- and glucocorticoid-regulated kinase 3 (SGK3), is essential for normal postnatal hair follicle development but plays no apparent role in glucose homeostasis. We report here an unexpected role of SGK3 in islet ß-cell function, which is revealed in Akt2/SGK3 double-knockout (DKO) mice. DKO mice have markedly worse glucose homeostasis than Akt2 single-null animals, including greater baseline glucose, and greater rise in blood glucose after glucose challenge. However, surprisingly, our data strongly support the idea that this exacerbation of the glucose-handling defect is due to impaired ß-cell function, rather than increased insulin resistance in peripheral tissues. DKO mice had lower plasma insulin and C-peptide levels, lower ß-cell mass, reduced glucose-stimulated insulin secretion, and greater sensitivity to exogenous insulin than Akt2 single nulls. We further demonstrated that SGK3 is strongly expressed in normal mouse islets and, interestingly, that ß-catenin expression is dramatically lower in the islets of DKO mice than in those of Akt2(-/-)/SGK3(+/+) or Akt2(-/-)/SGK3(+/-) mice. Taken together, these data strongly suggest that SGK3 plays a previously unappreciated role in glucose homeostasis, likely through direct effects within ß-cells, to stimulate proliferation and insulin release, at least in part by controlling the expression and activity of ß-catenin.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Tejido Adiposo/metabolismo , Animales , Apoptosis , Glucemia , Proliferación Celular , Expresión Génica , Glucosa/farmacología , Intolerancia a la Glucosa/genética , Insulina/sangre , Insulina/metabolismo , Insulina/fisiología , Resistencia a la Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Páncreas/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
10.
Diabetes ; 60(12): 3208-16, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22013016

RESUMEN

OBJECTIVE: Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS: We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS: We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In ß-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS: These studies demonstrate that a common transcriptional cascade drives the differentiation of ß-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Serotonina/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Insulina/genética , Ratones , Células 3T3 NIH , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neuronas Serotoninérgicas/metabolismo , Serotonina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Proteínas de Pez Cebra
11.
Nature ; 463(7282): 775-80, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148032

RESUMEN

Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Insulina/biosíntesis , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Diabetes Mellitus/congénito , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Embrión de Mamíferos/metabolismo , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Recesivos/genética , Pruebas Genéticas , Humanos , Recién Nacido , Islotes Pancreáticos/embriología , Masculino , Ratones , Células 3T3 NIH , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Factores de Transcripción del Factor Regulador X , Síndrome , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
12.
Endocr Relat Cancer ; 17(1): 283-91, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20048018

RESUMEN

Neuroendocrine (NE) or carcinoid tumors of the small intestine (SI) frequently metastasize and produce the hormone serotonin, causing significant morbidity and mortality. A member of the ETS oncogene family of transcription factors, Fev, acts with the homeodomain transcription factor Nkx2.2 in the development of serotonin neurons in mice. In this study, we investigated the role of Fev in normal and neoplastic SI. In NE tumors (NETs) of the SI, serotonin stimulates tumor growth and causes debilitating symptoms, such as diarrhea, flushing, wheezing, and right-sided valvular heart disease (i.e. carcinoid syndrome). Compared with those in the matched normal human SI, FEV expression levels were significantly elevated in primary NETs (20-fold, P<0.0001), lymph node metastases (35-fold, P=0.004), and NET liver metastases (22-fold, P<0.0001) resected from patients with serotonin excess. Fev is expressed in the wild type but not in Nkx2.2 (-/-) mouse SI, in which cells producing serotonin are absent. Using recombination-based cell lineage tracing, we found that FEV-positive cells give rise to serotonin-producing cells in the SI. In Fev (-/-) mouse SI, we observed no difference in the number of cells producing serotonin or other hormones. We conclude that FEV expression identifies serotonin-producing cells in normal and neoplastic SI and is a novel target for diagnosis of patients with NETs of the SI.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Enteroendocrinas/metabolismo , Neoplasias Intestinales/patología , Intestino Delgado/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Nucleares/fisiología , Serotonina/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patología , Estudios de Casos y Controles , Separación Celular/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Enteroendocrinas/citología , Células Enteroendocrinas/patología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Intestino Delgado/citología , Intestino Delgado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Transgénicos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
13.
Endocr Relat Cancer ; 16(1): 267-79, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18987169

RESUMEN

The homeodomain transcription factor NKX2.2 is necessary for neuroendocrine (NE) differentiation in the central nervous system and pancreas. NE tumors derived from the gut are defined by their NE phenotype, which is used for diagnosis and contributes to tumorigenicity. We hypothesized that NKX2.2 is important for NE differentiation in normal and neoplastic gut. NKX2.2 and NE marker expression was investigated in the small intestine of embryonic and adult mice using immunofluorescence (IF). To determine the role of NKX2.2 in NE differentiation of the intestine, the phenotype of Nkx2.2 (-/-) mice was examined by IF and real-time (RT)-PCR. NKX2.2 and NE marker expression in human NE tumors of the gut and normal tissues were evaluated by immunohistochemistry and qRT-PCR. NKX2.2 expression was detected in the intervillus/crypt regions of embryonic and adult mouse intestine. Co-expression of Nkx2.2 with neurogenin3 (NEUROG3) and hormones was observed in the adult intestinal crypt compartment, suggesting NKX2.2 functions in NEUROG3-positive endocrine progenitors and newly differentiated endocrine cells. In the intestine of Nkx2.2 (-/-) mice, we found a dramatic reduction in the number of cells producing numerous hormones, such as serotonin, gastrin, cholecystokinin, somatostatin, glucagon-like peptide 1 (GLP-1), and secretin, but an increase in cells producing ghrelin. NKX2.2 was expressed in most (24 of 29) human NE tumors derived from diverse primary sites. We conclude NKX2.2 functions in immature endocrine cells to control NE differentiation in normal intestine and is expressed in most NE tumors of the gut, and is therefore a novel target of diagnosis for patients with gastrointestinal NE tumors.


Asunto(s)
Neoplasias Gastrointestinales/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Tumores Neuroendocrinos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Células Endocrinas/citología , Células Endocrinas/fisiología , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Ghrelina/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Intestino Delgado/citología , Intestino Delgado/embriología , Ratones , Ratones Mutantes , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Nucleares , Proteínas de Pez Cebra
14.
Stem Cells ; 27(1): 220-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18832589

RESUMEN

Recent studies have provided important insight into the homeoprotein LIM homeobox transcription factor 1alpha (Lmx1a) and its role in the commitment of cells to a midbrain dopamine (mDA) fate in the developing mouse. We show here that Lmx1a also plays a pivotal role in the mDA differentiation of human embryonic stem (hES) cells. Thus, as indicated by small interfering RNA experiments, the transient early expression of Lmx1a is necessary for the coordinated expression of all other dopamine (DA)-specific phenotypic traits as hES cells move from multipotent human neural progenitor cells (hNPs) to more restricted precursor cells in vitro. Moreover, only Lmx1a-specified hNPs have the potential to differentiate into bona fide mDA neurons after transplantation into the 6-hydroxydopamine-treated rat striatum. In contrast, cortical human neuronal precursor cells (HNPCs) and mouse subventricular zone cells do not express Lmx1a or become mDA neurons even when placed in an environment that fosters their DA differentiation in vitro or in vivo. These findings suggest that Lmx1a may be critical to the development of mDA neurons from hES cells and that, along with other key early DA markers (i.e., Aldh1a1), may prove to be extremely useful for the selection of appropriately staged and suitably mDA-specified hES cells for cell replacement in Parkinson's disease.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Proteínas de Homeodominio/metabolismo , Mesencéfalo/citología , Neuronas/metabolismo , Enfermedad de Parkinson/terapia , Trasplante de Células Madre , Animales , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Células Madre Embrionarias/metabolismo , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Ratones , Modelos Biológicos , Neuronas/citología , Enfermedad de Parkinson/metabolismo , Factores de Tiempo , Factores de Transcripción
16.
Biochim Biophys Acta ; 1759(1-2): 44-50, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16546275

RESUMEN

Pax4 is a paired-homeodomain containing transcriptional factor that controls the differentiation of pancreatic beta cells. The aim of this study was to investigate the mechanism of PAX4 expression by activin A. By reporter gene analysis using AR42J-B13 cells, in which treatment with activin A induced PAX4 mRNA expression, we identified that a short sequence located approximately 1930 bp upstream of the transcriptional start site is essential for activin A induced PAX4 promoter activation. This region contains an E box and binding sites for hepatocyte nuclear factor (HNF)-1alpha. Mutation introduced in each binding site markedly reduced activin A responsiveness. It has been reported that HNF-1alpha synergizes with basic helix-loop-helix (bHLH) proteins in activating the PAX4 promoter, and we demonstrated that activin A strongly enhanced the functional activity of E47/E12 without the increase in its binding ability. In addition, suppression of E47/E12 expression in AR42J-B13 cells using siRNA oligonucleotides results in the significant decrease in the intrinsic activin A-induced PAX4 expression. Our results suggest that activin A enhances PAX4 expression by enhanced transactivation of E47/E12 proteins and might result in a cumulative transactivation of the promoter.


Asunto(s)
Activinas/farmacología , Proteínas de Homeodominio/genética , Subunidades beta de Inhibinas/farmacología , Factores de Transcripción Paired Box/genética , Factores de Transcripción TCF/genética , Activación Transcripcional/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Elementos E-Box , Regulación de la Expresión Génica/efectos de los fármacos , Factor Nuclear 1-alfa del Hepatocito , Humanos , Proteína 1 Similar al Factor de Transcripción 7
17.
Dev Biol ; 280(1): 111-21, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15766752

RESUMEN

Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.


Asunto(s)
Células Epiteliales/fisiología , Morfogénesis/fisiología , Páncreas/citología , Transducción de Señal , Transactivadores/metabolismo , Animales , Sistema Endocrino/embriología , Células Epiteliales/citología , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/anomalías , Páncreas/embriología , Páncreas/metabolismo , Regiones Promotoras Genéticas , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Cell Biochem Biophys ; 40(3 Suppl): 191-200, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15289654

RESUMEN

We discuss our work examining regulation and functions of mitogen-activated protein kinases, particularly ERK1 and ERK2, in pancreatic beta-cells. These enzymes are activated by glucose, other nutrients, and insulinogenic hormones. Their activation by these agents is calcium-dependent. A number of other stimuli also activate ERK1/2, but by mechanisms distinct from those involved in nutrient sensing. Inhibition of ERK1/2 has no apparent effect on insulin secretion measured after 2 h. On the other hand, ERK1/2 activity is required for maximal glucose-dependent activation of the insulin gene promoter. The primary effort has focused on INS-1 cell lines, with supporting and confirmatory studies in intact islets and other beta-cell lines, indicating the generality of our findings in beta-cell function. Thus ERK1/2 participate in transmitting glucose-sensing information to beta-cell functions. These kinases most likely act directly and indirectly on multiple pathways that regulate beta-cell function and, in particular, to transduce an elevated glucose signal into insulin gene transcription.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Ésteres del Forbol/farmacología , Ratas , Factores de Tiempo , Transcripción Genética
19.
Hum Mol Genet ; 12(24): 3307-14, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14570708

RESUMEN

During pancreatic organogenesis endocrine cells arise from non self-renewing progenitors that express Ngn3. The precursors that give rise to Ngn3+ cells are presumably located within duct-like structures. However, the nature of such precursors is poorly understood. We show that, at E13-E18, the embryonic stage during which the major burst of beta-cell neogenesis takes place, pancreatic duct cells express Hnf1beta, the product of the maturity-onset diabetes of the young type 5 (MODY5) gene. Ngn3+ cells at this stage invariably cluster with mitotically competent Hnf1beta+ cells, and are often intercalated with these cells in the epithelium that lines the lumen of primitive ducts. We present several observations that collectively indicate that Hnf1beta+ cells are the immediate precursors of Ngn3+ cells. We furthermore show that Hnf1beta expression is markedly reduced in early pancreatic epithelial cells of Hnf6-deficient mice, in which formation of Ngn3+ cells is defective. These findings define a precursor cellular stage of the embryonic pancreas and place Hnf1beta in a genetic hierarchy that regulates the generation of pancreatic endocrine cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Páncreas/embriología , Transactivadores/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linaje de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Factor Nuclear 1-beta del Hepatocito , Factor Nuclear 6 del Hepatocito , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Páncreas/metabolismo
20.
Mol Cell Biol ; 23(19): 6922-35, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12972610

RESUMEN

Hes1 is a mammalian basic helix-loop-helix transcriptional repressor that inhibits neuronal differentiation together with corepressors of the Groucho (Gro)/Transducin-like Enhancer of split (TLE) family. The interaction of Hes1 with Gro/TLE is mediated by a WRPW tetrapeptide present in all Hairy/Enhancer of split (Hes) family members. In contrast to Hes1, the related protein Hes6 promotes neuronal differentiation. Little is known about the molecular mechanisms that underlie the neurogenic activity of Hes6. It is shown here that Hes6 antagonizes Hes1 function by two mechanisms. Hes6 inhibits the interaction of Hes1 with its transcriptional corepressor Gro/TLE. Moreover, it promotes proteolytic degradation of Hes1. This effect is maximal when both Hes1 and Hes6 contain the WRPW motif and is reduced when Hes6 is mutated to eliminate a conserved site (Ser183) that can be phosphorylated by protein kinase CK2. Consistent with these findings, Hes6 inhibits Hes1-mediated transcriptional repression in cortical neural progenitor cells and promotes the differentiation of cortical neurons, a process that is normally inhibited by Hes1. Mutation of Ser183 impairs the neurogenic ability of Hes6. Taken together, these findings clarify the molecular events underlying the neurogenic function of Hes6 and suggest that this factor can antagonize Hes1 activity by multiple mechanisms.


Asunto(s)
Corteza Cerebral/embriología , Quimiocinas CXC , Proteínas de Homeodominio/antagonistas & inhibidores , Neuronas/citología , Proteínas Represoras/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Línea Celular , Células Cultivadas , Corteza Cerebral/citología , Quimiocina CXCL1 , Quimiocinas/metabolismo , Factores Quimiotácticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/metabolismo , Secuencias Hélice-Asa-Hélice , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Fosforilación , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Serina/metabolismo , Factor de Transcripción HES-1 , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA