Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Aging Cell ; 23(3): e14066, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38234228

RESUMEN

Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.


Asunto(s)
Enfermedad de Alzheimer , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Calidad de Vida , Encéfalo/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/patología
2.
Elife ; 112022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35200138

RESUMEN

A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies.


Cells are constantly perceiving and responding to changes in their surroundings, and challenging conditions such as extreme heat or toxic chemicals can put cells under stress. When this happens, protein production can be affected. Proteins are long chains of chemical building blocks called amino acids, and they can only perform their roles if they fold into the right shape. Some proteins fold easily and remain folded, but others can be unstable and often become misfolded. Unfolded proteins can become a problem because they stick to each other, forming large clumps called aggregates that can interfere with the normal activity of cells, causing damage. The causes of stress that have a direct effect on protein folding are called proteotoxic stresses, and include, for example, high temperatures, which make proteins more flexible and unstable, increasing their chances of becoming unfolded. To prevent proteins becoming misfolded, cells can make 'protein chaperones', a type of proteins that help other proteins fold correctly and stay folded. The production of protein chaperones often increases in response to proteotoxic stress. However, there are other types of stress too, such as genotoxic stress, which damages DNA. It is unclear what effect genotoxic stress has on protein folding. Huiting et al. studied protein folding during genotoxic stress in human cells grown in the lab. Stress was induced by either blocking the proteins that repair DNA or by 'trapping' the proteins that release DNA tension, both of which result in DNA damage. The analysis showed that, similar to the effects of proteotoxic stress, genotoxic stress increased the number of proteins that aggregate, although certain proteins formed aggregates even without stress, particularly if they were common and relatively unstable proteins. Huiting et al.'s results suggest that aggregation increases in cells under genotoxic stress because the cells fail to produce enough chaperones to effectively fold all the proteins that need it. Indeed, Huiting et al. showed that aggregates contain many proteins that rely on chaperones, and that increasing the number of chaperones in stressed cells reduced protein aggregation. This work shows that genotoxic stress can affect protein folding by limiting the availability of chaperones, which increases protein aggregation. Remarkably, there is a substantial overlap between proteins that aggregate in diseases that affect the brain ­ such as Alzheimer's disease ­ and proteins that aggregate after genotoxic stress. Therefore, further research could focus on determining whether genotoxic stress is involved in the progression of these neurological diseases.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN-Topoisomerasas/metabolismo , Chaperonas Moleculares/metabolismo , Daño del ADN , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Péptidos/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteoma/metabolismo , Cadena B de alfa-Cristalina/metabolismo
3.
Acta Neuropathol Commun ; 10(1): 8, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090578

RESUMEN

Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.


Asunto(s)
Encéfalo/metabolismo , Enfermedades Desmielinizantes/metabolismo , Macrófagos/metabolismo , Esclerosis Múltiple/metabolismo , Transcriptoma , Sustancia Blanca/metabolismo , Animales , Encéfalo/patología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Femenino , Humanos , Macrófagos/patología , Masculino , Ratones , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Sustancia Blanca/patología
4.
Aging Cell ; 20(10): e13450, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34598318

RESUMEN

Cells expressing high levels of the cyclin-dependent kinase (CDK)4/6 inhibitor p16 (p16High ) accumulate in aging tissues and promote multiple age-related pathologies, including neurodegeneration. Here, we show that the number of p16High cells is significantly increased in the central nervous system (CNS) of 2-year-old mice. Bulk RNAseq indicated that genes expressed by p16High cells were associated with inflammation and phagocytosis. Single-cell RNAseq of brain cells indicated p16High cells were primarily microglia, and their accumulation was confirmed in brains of aged humans. Interestingly, we identified two distinct subpopulations of p16High microglia in the mouse brain, with one being age-associated and one present in young animals. Both p16High clusters significantly differed from previously described disease-associated microglia and expressed only a partial senescence signature. Taken together, our study provides evidence for the existence of two p16-expressing microglia populations, one accumulating with age and another already present in youth that could positively and negatively contribute to brain homeostasis, function, and disease.


Asunto(s)
Envejecimiento , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Microglía/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA