Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomolecules ; 13(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830611

RESUMEN

Premature termination codons (PTCs) account for ~12% of all human disease mutations. Translation readthrough-inducing drugs (TRIDs) are prominent among the several therapeutic approaches being used to overcome PTCs. Ataluren is the only TRID that has been approved for treating patients suffering from a PTC disease, Duchenne muscular dystrophy, but it gives variable readthrough results in cells isolated from patients suffering from other PTC diseases. We recently elucidated ataluren's mechanism of action as a competitive inhibitor of release factor complex (RFC) catalysis of premature termination and identified ataluren's binding sites on the ribosome responsible for such an inhibition. These results suggest the possibility of discovering new TRIDs, which would retain ataluren's low toxicity while displaying greater potency and generality in stimulating readthrough via the inhibition of termination. Here we present a detailed description of a new in vitro plate reader assay that we are using both to screen small compound libraries for the inhibition of RFC-dependent peptide release and to better understand the influence of termination codon identity and sequence context on RFC activity.


Asunto(s)
Codón sin Sentido , Biosíntesis de Proteínas , Humanos , Codón de Terminación , Mutación , Péptidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33414181

RESUMEN

During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through-inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell's protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/efectos de los fármacos , Oxadiazoles/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Aminoglicósidos/metabolismo , Animales , Artemia/genética , Codón sin Sentido/metabolismo , Codón de Terminación/efectos de los fármacos , Codón de Terminación/metabolismo , Fibrosis Quística/genética , Distrofia Muscular de Duchenne/genética , Oxadiazoles/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Saccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA