Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(8): 5483-5495, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39046462

RESUMEN

The research in nanotherapeutics is rapidly advancing, particularly in the realm of nanoconstructs for drug delivery. This study introduces folate-based carbon dot-decorated nanodroplets (f-Dnm), synthesized from a binary mixture of negatively charged folic acid carbon dots (f-CDs) and cationic-branched polyethylenimine (PEI). The uniformly spherical nanodroplets with an average diameter of 115 ± 15 nm exhibit notable photoluminescence. Surface potential analysis reveals a significant change upon coacervation, attributed to strong electrostatic interactions between f-CD and PEI. The engineered nanodroplets show excellent colloidal and photostability even after 6 months of storage at room temperature. The pH-dependent self-assembly and disassembly properties of f-Dnm are explored for drug loading and release studies using doxorubicin (DOX) as a model anticancer drug. Moreover, the f-Dnm nanocarrier demonstrates significantly higher drug loading capabilities (∼90%). In vitro release studies of doxorubicin-loaded f-Dnm [f-Dnm(DOX)] reveal 5 times higher drug release at lysosomal pH 5.4 compared to that at physiological blood pH 7.4. Cytocompatibility assessments using the MTT assay on HeLa, A549, and NIH-3T3 cells confirm the nontoxic nature of f-Dnm, even at high concentrations. Additionally, f-Dnm(DOX) exhibits higher cytotoxicity in HeLa cells compared to f-CD(DOX) at similar DOX concentrations. Cellular uptake studies show an increased uptake of f-Dnm in folate receptor-positive HeLa and MDA-MB 231 cells. Hemolysis assay validated the biocompatibility of the developed formulation. Overall, these engineered nanodroplets represent a class of nontoxic nanocarriers that offer promising potential as nanotherapeutics for folate receptor-positive cells.


Asunto(s)
Materiales Biocompatibles , Carbono , Doxorrubicina , Ácido Fólico , Ensayo de Materiales , Tamaño de la Partícula , Puntos Cuánticos , Nanomedicina Teranóstica , Ácido Fólico/química , Humanos , Carbono/química , Doxorrubicina/farmacología , Doxorrubicina/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Puntos Cuánticos/química , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Animales , Ratones , Células HeLa
2.
ACS Appl Mater Interfaces ; 16(24): 30819-30832, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38845592

RESUMEN

Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.


Asunto(s)
Alginatos , Antibacterianos , Hierro , Animales , Alginatos/química , Hierro/química , Antibacterianos/química , Antibacterianos/farmacología , Ratas , Piel/efectos de los fármacos , Nanocompuestos/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Tetraciclina/química , Tetraciclina/farmacología
3.
RSC Adv ; 10(23): 13394-13404, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35493020

RESUMEN

Bio-based drug carriers have gained significant importance in Control Drug Delivery Systems (CDDS). In the present work, a new iron-based magnetic nano bio-composite (nano-Fe-CNB) is developed in a one-step dry calcination process (solventless) using a seaweed-based biopolymer. The detailed analysis of the developed nano Fe-CNB is carried out using FE-SEM, HR-TEM, P-XRD, XPS, Raman spectroscopy, FTIR etc. and shows that nano-Fe-CNB consists of nanoparticles of 5-10 nm decorated on 7-8 nm thick 2-D graphitic carbon material. The impregnation of nano-Fe-CNB into the calcium alginate (CA) hydrogel beads is found to have good drug loading capacity as well as pH responsive control release behavior which is demonstrated using doxorubicin (DOX) as a model cancer drug. The drug loading experiments exhibit ∼94% loading of DOX and release shows ∼38% and ∼8% release of DOX at pH 5.4 and 7.4 respectively. The developed nano Fe-CNB facilitates strong electrostatic interactions with cationic DOX molecules at pH 7.4 and thereby restricts the release of the drug at physiological pH. However, at cancer cell pH (5.4), the interaction between the drug and nano-Fe-CNB reduces which facilitates more drug release at pH 5.4. Thus, the developed nano-biocomposite has the potential to reduce the undesired side effects associated with faster release of drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA