Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Mutagénesis , Mutación , Humanos , Animales , Aductos de ADN/metabolismo , Rayos Ultravioleta , ADN/metabolismo , ADN/química , ADN/genética , Alquilación , ADN Polimerasa Dirigida por ADN/metabolismo
2.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34157308

RESUMEN

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Asunto(s)
Replicación del ADN/genética , Células Eucariotas/fisiología , Genoma Humano/genética , Línea Celular Tumoral , Cromatina/genética , Momento de Replicación del ADN/genética , Genoma Fúngico/genética , Estudio de Asociación del Genoma Completo/métodos , Células HeLa , Humanos , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción/fisiología
3.
CRISPR J ; 4(2): 223-232, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33876948

RESUMEN

Guided by the extensive knowledge of CRISPR-Cas9 molecular mechanisms, protein engineering can be an effective method in improving CRISPR-Cas9 toward desired traits different from those of their natural forms. Here, we describe a directed protein evolution method that enables selection of catalytically enhanced CRISPR-Cas9 variants (CECas9) by targeting a shortened protospacer within a toxic gene. We demonstrate the effectiveness of this method with a previously characterized Type II-C Cas9 from Acidothermus cellulolyticus (AceCas9) and show by enzyme kinetics an up to fourfold improvement of the in vitro catalytic efficiency by AceCECas9. We further evolved the more widely used Streptococcus pyogenes Cas9 (SpyCas9) and demonstrated a noticeable improvement in the SpyCECas9-facilitated homology directed repair-based gene insertion in human colon cancer cells.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Ingeniería de Proteínas , Actinobacteria/enzimología , Actinobacteria/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias del Colon , Edición Génica/métodos , Células HCT116 , Humanos , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética
4.
Nat Commun ; 11(1): 6146, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262376

RESUMEN

Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Humanos , Fase S , Cohesinas
5.
Nat Commun ; 11(1): 3613, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680994

RESUMEN

Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Momento de Replicación del ADN/genética , Genoma Humano , Inestabilidad Genómica , Afidicolina/farmacología , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Mapeo Cromosómico/métodos , ADN/química , Momento de Replicación del ADN/efectos de los fármacos , Fibroblastos , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética , Conformación de Ácido Nucleico , Sensibilidad y Especificidad , Transcripción Genética/efectos de los fármacos
6.
Genome Biol ; 21(1): 76, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209126

RESUMEN

BACKGROUND: DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS: Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS: Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.


Asunto(s)
Replicación del ADN , Animales , Línea Celular , Cromatina/genética , Momento de Replicación del ADN , Células Madre Embrionarias/metabolismo , Femenino , Células HCT116 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Análisis de Secuencia de ADN , Transcripción Genética
7.
Mol Cell ; 78(3): 522-538.e9, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220303

RESUMEN

To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation.


Asunto(s)
Senescencia Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Genoma Humano , Oncogenes , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Fibroblastos , Heterocromatina/genética , Humanos , Hibridación Fluorescente in Situ
8.
Blood Adv ; 3(21): 3201-3213, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698451

RESUMEN

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.


Asunto(s)
Cromosomas/genética , Momento de Replicación del ADN , Leucemia/genética , Leucemia/patología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores , Neoplasias del Sistema Nervioso Central/secundario , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Variación Genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos , Humanos , Inmunofenotipificación , Leucemia/mortalidad , Masculino , Ratones , Ratones Noqueados , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
9.
Nat Genet ; 50(10): 1388-1398, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202056

RESUMEN

Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.


Asunto(s)
Genoma Humano , Variación Estructural del Genoma , Neoplasias/genética , Biología de Sistemas/métodos , Células A549 , Línea Celular Tumoral , Mapeo Cromosómico , ADN de Neoplasias/análisis , ADN de Neoplasias/genética , Genes Relacionados con las Neoplasias , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células K562 , Desequilibrio de Ligamiento , Análisis de Secuencia de ADN/métodos , Integración de Sistemas
10.
Cell Cycle ; 17(13): 1667-1681, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963964

RESUMEN

Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.


Asunto(s)
Senescencia Celular , Momento de Replicación del ADN , Estrés Fisiológico , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Fibroblastos/citología , Humanos , Laminas/metabolismo , Oncogenes , Progeria/patología , Dominios Proteicos
11.
Nucleic Acids Res ; 46(4): 1810-1820, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29294101

RESUMEN

The role of DNA sequence in determining replication timing (RT) and chromatin higher order organization remains elusive. To address this question, we have developed an extra-chromosomal replication system (E-BACs) consisting of ∼200 kb human bacterial artificial chromosomes (BACs) modified with Epstein-Barr virus (EBV) stable segregation elements. E-BACs were stably maintained as autonomous mini-chromosomes in EBNA1-expressing HeLa or human induced pluripotent stem cells (hiPSCs) and established distinct RT patterns. An E-BAC harboring an early replicating chromosomal region replicated early during S phase, while E-BACs derived from RT transition regions (TTRs) and late replicating regions replicated in mid to late S phase. Analysis of E-BAC interactions with cellular chromatin (4C-seq) revealed that the early replicating E-BAC interacted broadly throughout the genome and preferentially with the early replicating compartment of the nucleus. In contrast, mid- to late-replicating E-BACs interacted with more specific late replicating chromosomal segments, some of which were shared between different E-BACs. Together, we describe a versatile system in which to study the structure and function of chromosomal segments that are stably maintained separately from the influence of cellular chromosome context.


Asunto(s)
Cromosomas Artificiales Bacterianos , Momento de Replicación del ADN , Núcleo Celular/genética , Células Cultivadas , Vectores Genéticos , Células HeLa , Herpesvirus Humano 4/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(51): E10972-E10980, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29196523

RESUMEN

Progeroid syndromes are rare genetic disorders that phenotypically resemble natural aging. Different causal mutations have been identified, but no molecular alterations have been identified that are in common to these diseases. DNA replication timing (RT) is a robust cell type-specific epigenetic feature highly conserved in the same cell types from different individuals but altered in disease. Here, we characterized DNA RT program alterations in Hutchinson-Gilford progeria syndrome (HGPS) and Rothmund-Thomson syndrome (RTS) patients compared with natural aging and cellular senescence. Our results identified a progeroid-specific RT signature that is common to cells from three HGPS and three RTS patients and distinguishes them from healthy individuals across a wide range of ages. Among the RT abnormalities, we identified the tumor protein p63 gene (TP63) as a gene marker for progeroid syndromes. By using the redifferentiation of four patient-derived induced pluripotent stem cells as a model for the onset of progeroid syndromes, we tracked the progression of RT abnormalities during development, revealing altered RT of the TP63 gene as an early event in disease progression of both HGPS and RTS. Moreover, the RT abnormalities in progeroid patients were associated with altered isoform expression of TP63 Our findings demonstrate the value of RT studies to identify biomarkers not detected by other methods, reveal abnormal TP63 RT as an early event in progeroid disease progression, and suggest TP63 gene regulation as a potential therapeutic target.


Asunto(s)
Momento de Replicación del ADN , Progeria/genética , Anciano de 80 o más Años , Biomarcadores , Niño , Fibroblastos/metabolismo , Expresión Génica , Genómica/métodos , Humanos , Recién Nacido , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progeria/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
13.
Exp Hematol ; 51: 71-82.e3, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28433605

RESUMEN

Genome-wide DNA replication timing (RT) profiles reflect the global three-dimensional chromosome architecture of cells. They also provide a comprehensive and unique megabase-scale picture of cellular epigenetic state. Thus, normal differentiation involves reproducible changes in RT, and transformation generally perturbs these, although the potential effects of altered RT on the properties of transformed cells remain largely unknown. A major challenge to interrogating these issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In contrast, the ability of many human ALL cell populations to expand when transplanted into highly immunodeficient mice is well documented. To examine the stability of DNA RT profiles of serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that circumvents the need for bromodeoxyuridine incorporation to distinguish early versus late S-phase cells. Using this and more standard protocols, we found consistently strong retention in xenografts of the original patient-specific RT features. Moreover, in a case in which genomic analyses indicated changing subclonal dynamics in serial passages, the RT profiles tracked concordantly. These results indicate that DNA RT is a relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they suggest the power of this approach for future interrogation of the origin and consequences of altered DNA RT in ALL.


Asunto(s)
Proliferación Celular , Replicación del ADN , ADN de Neoplasias/biosíntesis , Trasplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animales , Femenino , Xenoinjertos , Humanos , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
14.
EURASIP J Bioinform Syst Biol ; 2015(1): 10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26587014

RESUMEN

Biological networks inherently have uncertain topologies. This arises from many factors. For instance, interactions between molecules may or may not take place under varying conditions. Genetic or epigenetic mutations may also alter biological processes like transcription or translation. This uncertainty is often modeled by associating each interaction with a probability value. Studying biological networks under this probabilistic model has already been shown to yield accurate and insightful analysis of interaction data. However, the problem of assigning accurate probability values to interactions remains unresolved. In this paper, we present a novel method for computing interaction probabilities in signaling networks based on transcription levels of genes. The transcription levels define the signal reachability probability between membrane receptors and transcription factors. Our method computes the interaction probabilities that minimize the gap between the observed and the computed signal reachability probabilities. We evaluate our method on four signaling networks from the Kyoto Encyclopedia of Genes and Genomes (KEGG). For each network, we compute its edge probabilities using the gene expression profiles for seven major leukemia subtypes. We use these values to analyze how the stress induced by different leukemia subtypes affects signaling interactions.

15.
Genome Res ; 25(8): 1104-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995270

RESUMEN

Mammalian genomes are partitioned into domains that replicate in a defined temporal order. These domains can replicate at similar times in all cell types (constitutive) or at cell type-specific times (developmental). Genome-wide chromatin conformation capture (Hi-C) has revealed sub-megabase topologically associating domains (TADs), which are the structural counterparts of replication domains. Hi-C also segregates inter-TAD contacts into defined 3D spatial compartments that align precisely to genome-wide replication timing profiles. Determinants of the replication-timing program are re-established during early G1 phase of each cell cycle and lost in G2 phase, but it is not known when TAD structure and inter-TAD contacts are re-established after their elimination during mitosis. Here, we use multiplexed 4C-seq to study dynamic changes in chromatin organization during early G1. We find that both establishment of TADs and their compartmentalization occur during early G1, within the same time frame as establishment of the replication-timing program. Once established, this 3D organization is preserved either after withdrawal into quiescence or for the remainder of interphase including G2 phase, implying 3D structure is not sufficient to maintain replication timing. Finally, we find that developmental domains are less well compartmentalized than constitutive domains and display chromatin properties that distinguish them from early and late constitutive domains. Overall, this study uncovers a strong connection between chromatin re-organization during G1, establishment of replication timing, and its developmental control.


Asunto(s)
Cromatina/química , Cromatina/genética , Momento de Replicación del ADN , Fase G1 , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones , Análisis de Secuencia de ADN/métodos
16.
Genome Res ; 25(4): 544-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25677182

RESUMEN

The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term "specific expression domains." We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data.


Asunto(s)
Cromatina/genética , Biología Computacional/métodos , Genómica/métodos , Conformación Molecular , Anotación de Secuencia Molecular/métodos , Algoritmos , Secuencias de Aminoácidos/genética , Línea Celular Tumoral , Cromatina/metabolismo , Estructuras Cromosómicas , Genoma Humano/genética , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Regiones Promotoras Genéticas/genética
17.
PLoS Genet ; 10(5): e1004290, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24785991

RESUMEN

Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Placenta/metabolismo , Animales , Adhesión Celular/genética , Diferenciación Celular/genética , Femenino , Eliminación de Gen , Humanos , Neurogénesis , Poliploidía , Embarazo , Procesos Estocásticos
18.
Curr Opin Genet Dev ; 25: 93-100, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598232

RESUMEN

A recent flurry of reports correlates replication timing (RT) with mutation rates during both evolution and cancer. Specifically, point mutations and copy number losses correlate with late replication, while copy number gains and other rearrangements correlate with early replication. In some cases, plausible mechanisms have been proposed. Point mutation rates may reflect temporal variation in repair mechanisms. Transcription-induced double-strand breaks are expected to occur in transcriptionally active early replicating chromatin. Fusion partners are generally in close proximity, and chromatin in close proximity replicates at similar times. However, temporal enrichment of copy number gains and losses remains an enigma. Moreover, many conclusions are compromised by a lack of matched RT and sequence datasets, the filtering out of developmental variation in RT, and the use of somatic cell lines to make inferences about germline evolution.


Asunto(s)
Replicación del ADN , Genoma Humano , Mutación , Neoplasias/genética , Animales , Variaciones en el Número de Copia de ADN , Humanos , Fase S
19.
Genome Res ; 22(10): 1833-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22628462

RESUMEN

Abnormal replication timing has been observed in cancer but no study has comprehensively evaluated this misregulation. We generated genome-wide replication-timing profiles for pediatric leukemias from 17 patients and three cell lines, as well as normal B and T cells. Nonleukemic EBV-transformed lymphoblastoid cell lines displayed highly stable replication-timing profiles that were more similar to normal T cells than to leukemias. Leukemias were more similar to each other than to B and T cells but were considerably more heterogeneous than nonleukemic controls. Some differences were patient specific, while others were found in all leukemic samples, potentially representing early epigenetic events. Differences encompassed large segments of chromosomes and included genes implicated in other types of cancer. Remarkably, differences that distinguished leukemias aligned in register to the boundaries of developmentally regulated replication-timing domains that distinguish normal cell types. Most changes did not coincide with copy-number variation or translocations. However, many of the changes that were associated with translocations in some leukemias were also shared between all leukemic samples independent of the genetic lesion, suggesting that they precede and possibly predispose chromosomes to the translocation. Altogether, our results identify sites of abnormal developmental control of DNA replication in cancer that reveal the significance of replication-timing boundaries to chromosome structure and function and support the replication domain model of replication-timing regulation. They also open new avenues of investigation into the chromosomal basis of cancer and provide a potential novel source of epigenetic cancer biomarkers.


Asunto(s)
Momento de Replicación del ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Cariotipo Anormal , Línea Celular , Niño , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Heterogeneidad Genética , Humanos , Leucemia/genética , Linfocitos/metabolismo , Translocación Genética
20.
PLoS Comput Biol ; 7(10): e1002225, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028635

RESUMEN

Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here, we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify "replication timing fingerprints" unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells. Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types, and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified independently using site-specific PCR against fingerprint regions. In sum, replication fingerprints provide a comprehensive means for cell characterization and are a promising tool for identifying regions with cell type-specific organization.


Asunto(s)
Dermatoglifia del ADN/métodos , Momento de Replicación del ADN/fisiología , Células Madre Embrionarias/clasificación , Células Madre Pluripotentes/clasificación , Animales , Línea Celular , Cromatina/metabolismo , Metilación de ADN , Endodermo/citología , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Mesodermo/citología , Ratones , Método de Montecarlo , Músculo Liso/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA