Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Methods Mol Biol ; 2823: 95-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052216

RESUMEN

Three-dimensional (3D) cell culture creates a more physiologically relevant environment for enhanced drug screening capabilities using microcarriers. An automated 3D system that integrates robotic manipulators, liquid handling systems, sensors, and environment control systems has the capacity to handle multiple samples in parallel, perform repetitive tasks, and provide real-time monitoring and analysis. This chapter describes a potential 3D cell culture drug screening model by combining renal proximal tubule cells as a representative normal cell line with cancer cell lines. This combination is subjected to drug screening to evaluate the drug's efficacy in suppressing cancer cells while minimizing impact on normal cells with the added benefit of having the ability to separate the two cell types by magnetic isolation for high content screens including mass spectrometry-based proteomics. This study presents advancements in 3D cell culture techniques, emphasizing the importance of automation and the potential of microcarriers in drug screening and disease modeling.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Humanos , Técnicas de Cultivo Tridimensional de Células/métodos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Técnicas de Cultivo de Célula/métodos , Antineoplásicos/farmacología , Automatización , Automatización de Laboratorios/métodos , Neoplasias/patología , Neoplasias/tratamiento farmacológico
2.
Breast Cancer (Auckl) ; 18: 11782234241226802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298330

RESUMEN

Background: The scaffolding protein, caveolin-1 (Cav-1), participates in multiple cellular functions including promotion of sodium excretion from the kidney. Loss of expression of Cav-1 is associated with tumorigenesis of various types of cancer. We have shown the potential link between hypertension and breast cancer via abnormal function of the G protein-coupled receptor kinase type 4 (GRK4). Objective: The current studies tested the hypothesis that Cav-1 acts as a tumor-suppressive factor in breast cancer cells and enhances the sensitivity to the inhibitory effect of the type 1 dopaminergic receptor (D1R). Methods: Michigan Cancer Foundation (MCF) MCF-7 cells stably expressing a Cav-1/mCherry fusion protein or mCherry alone were used as models to examine the effect of Cav-1 on cell growth, apoptosis, and senescence. Cell proliferation was determined by cell counting, cell cycle analysis (flow cytometry), and BrdU incorporation. Apoptosis was determined using the Cell Death Detection ELISA kit from Roche Diagnosis. Senescence was determined using the senescence associated beta galactosidase (SA-ß-gal) assay. Reactive oxygen species (ROS) was measured using 2',7'-dichlorodihydrofluorescein diacetate. Western blot analysis was used to measure activation of signaling pathway molecules. All statistical analyses were conducted with Microsoft Excel. Results: Overexpression of Cav-1 in MCF-7 cells reduced cellular growth rate. Both inhibition of proliferation and induction of cell death are contributing factors. Multiple signaling pathways were activated in Cav-1-expressing MCF-7 cells. Activation of Akt was prominent. In MCF-7-expressing Cav-1 (MCF-7 Cav-1) cells, the levels of phosphorylated Akt at S473 and T308 were increased 28- and 8.7-fold, respectively. Instead of protecting cells from apoptosis, extremely high levels of activated Akt resulted in increased levels of ROS which led to apoptosis and senescence. The tumor-suppressive effect plus downregulation of GRK4 makes Cav-1-expressing MCF-7 cells significantly more sensitive to the inhibitory effect of the D1R agonist, SKF38393. Conclusion: Caveolin-1 acts as a tumor-suppressing factor via extreme activation of Akt and down regulation of survival factors such as GRK4, survivin, and cyclin D1.

3.
Circ Res ; 132(9): 1127-1140, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919600

RESUMEN

BACKGROUND: Extracellular renal interstitial guanosine cyclic 3',5'-monophosphate (cGMP) inhibits renal proximal tubule (RPT) sodium (Na+) reabsorption via Src (Src family kinase) activation. Through which target extracellular cGMP acts to induce natriuresis is unknown. We hypothesized that cGMP binds to the extracellular α1-subunit of NKA (sodium-potassium ATPase) on RPT basolateral membranes to inhibit Na+ transport similar to ouabain-a cardiotonic steroid. METHODS: Urine Na+ excretion was measured in uninephrectomized 12-week-old female Sprague-Dawley rats that received renal interstitial infusions of vehicle (5% dextrose in water), cGMP (18, 36, and 72 µg/kg per minute; 30 minutes each), or cGMP+rostafuroxin (12 ng/kg per minute) or were subjected to pressure-natriuresis±rostafuroxin infusion. Rostafuroxin is a digitoxigenin derivative that displaces ouabain from NKA. RESULTS: Renal interstitial cGMP and raised renal perfusion pressure induced natriuresis and increased phosphorylated SrcTyr416 and Erk 1/2 (extracellular signal-regulated protein kinase 1/2)Thr202/Tyr204; these responses were abolished with rostafuroxin coinfusion. To assess cGMP binding to NKA, we performed competitive binding studies with isolated rat RPTs using bodipy-ouabain (2 µM)+cGMP (10 µM) or rostafuroxin (10 µM) and 8-biotin-11-cGMP (2 µM)+ouabain (10 µM) or rostafuroxin (10 µM). cGMP or rostafuroxin reduced bodipy-ouabain fluorescence intensity, and ouabain or rostafuroxin reduced 8-biotin-11-cGMP staining. We cross-linked isolated rat RPTs with 4-N3-PET-8-biotin-11-cGMP (2 µM); 8-N3-6-biotin-10-cAMP served as negative control. Precipitation with streptavidin beads followed by immunoblot analysis showed that RPTs after cross-linking with 4-N3-PET-8-biotin-11-cGMP exhibited a significantly stronger signal for NKA than non-cross-linked samples and cross-linked or non-cross-linked 8-N3-6-biotin-10-cAMP RPTs. Ouabain (10 µM) reduced NKA in cross-linked 4-N3-PET-8-biotin-11-cGMP RPTs confirming fluorescence staining. 4-N3-PET-8-biotin-11-cGMP cross-linked samples were separated by SDS gel electrophoresis and slices corresponding to NKA molecular weight excised and processed for mass spectrometry. NKA was the second most abundant protein with 50 unique NKA peptides covering 47% of amino acids in NKA. Molecular modeling demonstrated a potential cGMP docking site in the ouabain-binding pocket of NKA. CONCLUSIONS: cGMP can bind to NKA and thereby mediate natriuresis.


Asunto(s)
GMP Cíclico , Natriuresis , ATPasa Intercambiadora de Sodio-Potasio , Animales , Femenino , Ratas , Adenosina Trifosfatasas/metabolismo , Biotina/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Natriuresis/fisiología , Ouabaína/farmacología , Potasio/metabolismo , Ratas Sprague-Dawley , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
J Cell Sci Ther ; 13(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-37994311

RESUMEN

Hypertension and breast cancer are two common diseases occurring in women. Clinical studies have shown increased breast cancer incidence in hypertensive women. Several lines of evidence demonstrate that G protein-coupled Receptor Kinase 4 (GRK4) could be a common risk factor for hypertension and breast cancer. This article reviews our current understanding of molecular mechanisms of GRK4 in hypertension and breast cancer.

5.
Endocrinology ; 162(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534267

RESUMEN

ATP6AP2 expression is increased in the nephron during high-fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week-old male C57BL/6J mice with inducible nephron-specific ATP6AP2 KO and noninduced controls were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (P < 0.01) lower WT compared with controls. HFD-fed mice had 41% (P < 0.05) greater WT than ND-fed control mice. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (P < 0.05). Mice on HFD had less caloric intake compared with ND controls (P < 0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron-specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.


Asunto(s)
Túbulos Renales Proximales/fisiología , Obesidad/genética , ATPasas de Translocación de Protón/fisiología , Receptores de Superficie Celular/fisiología , Animales , Dieta Alta en Grasa , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefronas/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control , Especificidad de Órganos/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Insuficiencia Renal/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología
6.
Breast Cancer (Auckl) ; 15: 11782234211015753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34103922

RESUMEN

PURPOSE: Clinical studies have shown that breast cancer risk is increased in hypertensive women. The underlying molecular mechanism remains undetermined. The current study tests our hypothesis that G protein coupled receptor kinase 4 (GRK4) is a molecule that links hypertension and breast cancer. GRK4 plays an important role in regulation of renal sodium excretion. Sustained activation of GRK4 as in the circumstances of single nucleotide polymorphism (SNPs) causes hypertension. Expression of GRK4 in the kidney is regulated by cMyc, an oncogene that is amplified in breast cancer. METHODS: Western analysis was used to evaluate GRK4 protein expression in seven breast cancer cell lines. GRK4 gene single nucleotide polymorphism in breast cancer cell lines and in breast cancer cDNA arrays were determined using TaqMan Genotyping qPRC. The function of GRK4 was evaluated in MCF-7 cells with cMyc knock-down and GRK4 re-expression and in MDA-MB-468 cells expressing inducible GRK4 shRNA lentivirus constructs. Nuclei counting and 5-Bromo-2'-deoxy-uridine (BrdU) labeling were used to evaluate cell growth and proliferation. RESULTS: Genotyping of GRK4 SNPs in breast cancer cDNA arrays (n = 94) revealed that the frequency of carrying two hypertension related SNPs A142 V or R65 L is threefold higher in breast cancer patients than in healthy people (P = 7.53E-11). GRK4 protein is expressed in seven breast cancer cell lines but not the benign mammary epithelial cell line, MCF-10A. Three hypertension related SNPs in the GRK4 gene were identified in the breast cancer cell lines. Except for BT20, all other breast cancer lines have 1-3 GRK4 SNPs of which A142 V occurs in all 6 lines. MDA-MB-468 cells contain homozygous A142 V and R65 L SNPs. Knocking down cMyc in MCF-7 cells significantly reduced the growth rate, which was rescued by re-expression of GRK4. We then generated three stable GRK4 knock-down MDA-MB-468 lines using inducible lentiviral shRNA vectors. Doxycycline (Dox) induced GRK4 silencing significantly reduced GRK4 mRNA and protein levels, growth rates, and proliferation. As a marker of cell proliferation, the percentage of BrdU-labeled cells decreased from 45 ± 3% in the cells without Dox to 32 ± 5% in the cells treated with 0.1 µg/mL Dox. CONCLUSIONS: GRK4 acts as an independent proliferation promotor in breast cancer. Our results suggest that targeted inhibition of GRK4 could be a new therapy for both hypertension and breast cancer.

7.
Circ Res ; 126(5): 644-659, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31997705

RESUMEN

RATIONALE: Previous studies identified a defect in Ang III (angiotensin III [des-aspartyl1-angiotensin II])-elicited AT2R (Ang type-2 receptor)-mediated natriuresis in renal proximal tubule cells of spontaneously hypertensive rats (SHR). OBJECTIVE: This study aimed to delineate in prehypertensive SHR kidneys the receptor or postreceptor defect causing impaired AT2R signaling and renal sodium (Na+) retention by utilizing the selective AT2R agonist compound-21 (C-21). METHODS AND RESULTS: Female 4-week-old Wistar Kyoto and SHR rats were studied after 24-hour systemic AT1R (Ang II type-1 receptor) blockade. Left kidneys received 30-minute renal interstitial infusions of vehicle followed by C-21 (20, 40, and 60 ng/[kg·min], each dose 30 minutes). Right kidneys received vehicle infusions. In Wistar Kyoto, C-21 dose-dependently increased urine Na+ excretion from 0.023±0.01 to 0.064±0.02, 0.087±0.01, and 0.089±0.01 µmol/min (P=0.008, P<0.0001, and P<0.0001, respectively) and renal interstitial fluid levels of AT2R downstream signaling molecule cGMP (cyclic guanosine 3',5' monophosphate) from 0.91±0.3 to 3.1±1.0, 5.9±1.2 and 5.3±0.5 fmol/mL (P=nonsignificant, P<0.0001, and P<0.0001, respectively). In contrast, C-21 did not increase urine Na+ excretion or renal interstitial cGMP in SHR. Mean arterial pressure was slightly higher in SHR but within the normotensive range and unaffected by C-21. In Wistar Kyoto, but not SHR, C-21 induced AT2R translocation to apical plasma membranes of renal proximal tubule cells, internalization/inactivation of NHE-3 (sodium-hydrogen exchanger-3) and Na+/K+ATPase (sodium-potassium-atpase) and phosphorylation of AT2R-cGMP downstream signaling molecules Src (Src family kinase), ERK (extracellular signal-related kinase), and VASP (vasodilator-stimulated phosphoprotein). To test whether cGMP could bypass the natriuretic defect in SHR, we infused 8-bromo-cGMP. This restored natriuresis, Na+ transporter internalization/inactivation, and Src and VASP phosphorylation, but not apical plasma membrane AT2R recruitment. In contrast, 8-bromo-cAMP administration had no effect on natriuresis or AT2R recruitment in SHR. CONCLUSIONS: The results demonstrate a primary renal proximal tubule cell AT2R natriuretic defect in SHR that may contribute to the development of hypertension. Since the defect is abrogated by exogenous intrarenal cGMP, the renal cGMP pathway may represent a viable target for the treatment of hypertension. Visual Overview: An online visual overview is available for this article.


Asunto(s)
Hipertensión/metabolismo , Túbulos Renales Proximales/metabolismo , Natriuresis , Receptor de Angiotensina Tipo 2/metabolismo , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Moléculas de Adhesión Celular/metabolismo , GMP Cíclico/metabolismo , Líquido Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hipertensión/genética , Túbulos Renales Proximales/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/metabolismo
8.
J Mol Endocrinol ; 64(2): 53-65, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794424

RESUMEN

Gastrin, secreted by stomach G cells in response to ingested sodium, stimulates the renal cholecystokinin B receptor (CCKBR) to increase renal sodium excretion. It is not known how dietary sodium, independent of food, can increase gastrin secretion in human G cells. However, fenofibrate (FFB), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, increases gastrin secretion in rodents and several human gastrin-secreting cells, via a gastrin transcriptional promoter. We tested the following hypotheses: (1.) the sodium sensor in G cells plays a critical role in the sodium-mediated increase in gastrin expression/secretion, and (2.) dopamine, via the D1R and PPAR-α, is involved. Intact human stomach antrum and G cells were compared with human gastrin-secreting gastric and ovarian adenocarcinoma cells. When extra- or intracellular sodium was increased in human antrum, human G cells, and adenocarcinoma cells, gastrin mRNA and protein expression/secretion were increased. In human G cells, the PPAR-α agonist FFB increased gastrin protein expression that was blocked by GW6471, a PPAR-α antagonist, and LE300, a D1-like receptor antagonist. LE300 prevented the ability of FFB to increase gastrin protein expression in human G cells via the D1R, because the D5R, the other D1-like receptor, is not expressed in human G cells. Human G cells also express tyrosine hydroxylase and DOPA decarboxylase, enzymes needed to synthesize dopamine. G cells in the stomach may be the sodium sensor that stimulates gastrin secretion, which enables the kidney to eliminate acutely an oral sodium load. Dopamine, via the D1R, by interacting with PPAR-α, is involved in this process.


Asunto(s)
Gastrinas/metabolismo , Neoplasias Ováricas/metabolismo , PPAR alfa/metabolismo , Antro Pilórico/metabolismo , Receptores de Dopamina D1/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fenofibrato/farmacología , Técnica del Anticuerpo Fluorescente , Células Secretoras de Gastrina/efectos de los fármacos , Células Secretoras de Gastrina/metabolismo , Humanos , Inmunohistoquímica , Fitohemaglutininas/metabolismo , Antro Pilórico/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de Dopamina D1/agonistas , Cloruro de Sodio/farmacología
9.
Sci Rep ; 9(1): 16861, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727925

RESUMEN

The Wnt/ß-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via ß-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/ß-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/ß-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/ß-catenin signal transduction with broad implications for health and development of new therapeutics.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Receptores de Dopamina D2/genética , Daño por Reperfusión/genética , Proteína Wnt3A/genética , beta Catenina/genética , Animales , Proliferación Celular , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Células Epiteliales/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Dopamina D2/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Transfección , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
10.
J Endocr Soc ; 3(11): 2088-2106, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31663064

RESUMEN

Intrarenal ghrelin infusion activates ghrelin receptors in the kidney collecting duct (CD) to increase α epithelial sodium (Na+) channel (αENaC)-dependent Na+ reabsorption in vivo, but the underlying mechanisms are unknown. Seventy-two hours following uninephrectomy, 12-week-old female Sprague-Dawley rats received the following renal interstitial (RI) infusions for 1 hour after a 1-hour control: vehicle (n = 10), ghrelin (3 µg/minute; n = 8), ghrelin + phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 (0.1 µg/kg/minute; n = 7), ghrelin + protein kinase A (PKA) inhibitor adenosine 3'5'-cyclic monophosphorothioate, Rp-isomer (10 µg/kg/minute; n = 8), ghrelin + microtubule polymerization inhibitor nocodazole (0.3 µg/kg/minute; n = 7), or ghrelin + actin polymerization inhibitor cytochalasin D (0.3 µg/kg/minute; n = 6). Compared with vehicle infusion, RI ghrelin induced a significant anti-natriuresis (urine Na+ excretion was reduced by 53.7% ± 6.8%; P < 0.001). This effect was abolished during concomitant PKA or microtubule inhibition (106.4% ± 9.4% and 109.7% ± 10.6% of vehicle infusion, respectively; P < 0.01 from ghrelin) but not during concomitant PI3K or actin inhibition (reduced by 48.6% ± 3.9% and 52.8% ± 12.7%, respectively; P < 0.001 and P < 0.01 from vehicle, respectively; P = not significant from ghrelin). Infusions had no effect on mean arterial pressure. Western blot analysis demonstrated that CD membrane but not total αENaC expression increased in response to ghrelin infusion compared with vehicle, (0.39 ± 0.05 vs 0.12 ± 0.02 arbitrary units; P < 0.01). This effect was abolished during PKA or microtubule inhibition but persisted during PI3K or actin inhibition. Neural precursor cell expressed, developmentally down-regulated 4 isoform 2 (Nedd4-2) dependent internalization of αENaC was not affected by ghrelin, indicating that microtubule-dependent forward trafficking of αENaC is necessary for anti-natriuretic responses to ghrelin. Taken together, these studies highlight the importance of PKA and microtubule polymerization in ghrelin-induced αENaC-mediated Na+ reabsorption.

11.
J Am Heart Assoc ; 8(9): e012016, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31039659

RESUMEN

Background Previous studies demonstrated that angiotensin (Ang) III , not Ang II , is the predominant endogenous agonist for Ang type-2 receptor ( AT 2R)-induced natriuresis in normal rats, and that hypertensive 12-week-old spontaneously hypertensive rats ( SHR ) lack natriuretic responses to Ang III . This study tested whether prehypertensive SHR already have defective Ang III -induced natriuresis and determined possible mechanisms. Methods and Results Female and male normotensive 4-week-old SHR and Wistar Kyoto rats were studied after 24-hour systemic AT 1R blockade. Left kidneys received 30 minute renal interstitial infusions of vehicle followed by Ang III (3.5, 7.0, 14, and 28 nmol/kg per min; each dose for 30 minutes). Right kidneys received vehicle infusions. In 4-week-old Wistar Kyoto rats, renal interstitial Ang III increased urine sodium (Na+) excretion but failed to induce natriuresis in 4-week-old SHR . Renal Ang III levels were similar between Wistar Kyoto rats and SHR , making increased Ang III degradation as a possible cause for defective natriuresis in SHR unlikely. In Wistar Kyoto rats, renal interstitial Ang III induced translocation of AT 2Rs to apical plasma membranes of renal proximal tubule cells. Simultaneously, Ang III induced retraction of the major Na+ transporter Na+-H+ exchanger-3 ( NHE -3) from apical membranes and internalization of Na+/K+ ATP ase ( NKA ) from basolateral membranes of renal proximal tubule cells. Consistent with NHE -3 and NKA retraction, Ang III increased pS er552- NHE -3 and decreased pS er23- NKA . In contrast, in SHR , intrarenal Ang III failed to induce AT 2R translocation, NHE -3 or NKA retraction, pS er552- NHE -3 phosphorylation, or pS er23- NKA dephosphorylation. Conclusions These results indicate impaired Ang III / AT 2R signaling as a possible primary defect in prehypertensive SHR .


Asunto(s)
Angiotensina III/administración & dosificación , Presión Arterial/efectos de los fármacos , Riñón/efectos de los fármacos , Natriuresis/efectos de los fármacos , Prehipertensión/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Fosforilación , Prehipertensión/fisiopatología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
12.
Clin Biochem ; 47(15): 89-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24976626

RESUMEN

OBJECTIVES: Exosomes are 50-90nm extracellular membrane particles that may mediate trans-cellular communication between cells and tissues. We have reported that human urinary exosomes contain miRNA that are biomarkers for salt sensitivity and inverse salt sensitivity of blood pressure. This study examines exosomal transfer between cultured human renal proximal tubule cells (RPTCs) and from RPTCs to human distal tubule and collecting duct cells. DESIGN AND METHODS: For RPTC-to-RPTC exosomal transfer, we utilized 5 RPTC lines producing exosomes that were fluorescently labeled with exosomal-specific markers CD63-EGFP or CD9-RFP. Transfer between RPTCs was demonstrated by co-culturing CD63-EGFP and CD9-RFP stable clones and performing live confocal microscopy. For RPTC-to-distal segment exosomal transfer, we utilized 5 distal tubule and 3 collecting duct immortalized cell lines. RESULTS: Time-lapse videos revealed unique proximal tubule cellular uptake patterns for exosomes and eventual accumulation into the multivesicular body. Using culture supernatant containing exosomes from 3 CD9-RFP and 2 CD63-EGFP RPTC cell lines, all 5 distal tubule cell lines and all 3 collecting duct cell lines showed exosomal uptake as measured by microplate fluorometry. Furthermore, we found that RPTCs stimulated with fenoldopam (dopamine receptor agonist) had increased production of exosomes, which upon transfer to distal tubule and collecting duct cells, reduced the basal reactive oxygen species (ROS) production rates in those recipient cells. CONCLUSION: Due to the complex diversity of exosomal contents, this proximal-to-distal vesicular inter-nephron transfer may represent a previously unrecognized trans-renal communication system.


Asunto(s)
Exosomas/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Comunicación Celular , Línea Celular , Exosomas/genética , Humanos , Riñón/citología , Riñón/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Distales/citología , Túbulos Renales Proximales/citología , MicroARNs/genética , Nefronas/metabolismo , Tetraspanina 29/genética , Tetraspanina 30/genética
13.
Hypertension ; 63(3): e74-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24379187

RESUMEN

The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs), and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single-nucleotide polymorphisms (SNPs; rs6276, rs6277, and rs1800497) in the human DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs (hRPTCs) expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the proinflammatory tumor necrosis factor-α and the profibrotic transforming growth factor-ß1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin 1, and collagen I a1. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. The expression of D2R was increased and that of transforming growth factor-ß1, Smad3, Snail1, vimentin, fibronectin 1, and collagen I a1 was decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared with hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in hRPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure.


Asunto(s)
Inflamación/genética , Túbulos Renales Proximales/metabolismo , Polimorfismo de Nucleótido Simple , ARN Neoplásico/genética , Receptores de Dopamina D2/genética , Animales , Carcinoma de Células Renales/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Genotipo , Humanos , Immunoblotting , Inflamación/metabolismo , Inflamación/patología , Neoplasias Renales/patología , Túbulos Renales Proximales/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Dopamina D2/metabolismo , Transducción de Señal/genética , Células Tumorales Cultivadas
14.
Kidney Int ; 84(3): 501-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23698230

RESUMEN

The main distal nephron segment sodium transporters are the distal tubule chlorothiazide-sensitive sodium chloride cotransporter (NCC) and the collecting duct amiloride-sensitive epithelial sodium channel (ENaC). The infusion of ghrelin into the renal interstitium stimulates distal nephron-dependent sodium reabsorption in normal rats, but the mechanism is unknown. Here we localize renal ghrelin receptors (GR) to the cortical collecting duct (CCD). Ghrelin significantly increased phosphorylated serum/glucocorticoid-regulated kinase-1 (pSGK1), a major upstream signaling intermediate regulating ENaC. To test whether increased apical membrane αENaC induced the antinatriuresis, ghrelin was infused in the presence of acute and chronic amiloride, a selective inhibitor of ENaC. In the presence of amiloride, renal interstitial ghrelin failed to reduce urine sodium excretion, suggesting that ghrelin-induced sodium reabsorption is dependent on intact ENaC activity. While the main sodium transporter of the CCD is ENaC, NCC is also present. In response to renal interstitial ghrelin infusion, neither total nor phosphorylated NCC levels are altered. Ghrelin-induced sodium reabsorption persisted in the presence of chlorothiazide (selective inhibitor of NCC), indicating that intact NCC activity is not necessary for ghrelin-induced antinatriuresis. Finally, renal interstitial ghrelin infusion significantly increased interstitial cAMP levels and adenylyl cyclase blockade abolished ghrelin-induced antinatriuresis. Thus, GRs expressed in the CCD regulate sodium reabsorption by cAMP-induced trafficking of ENaC to the apical membrane.


Asunto(s)
AMP Cíclico/fisiología , Canales Epiteliales de Sodio/fisiología , Túbulos Renales Colectores/fisiología , Receptores de Ghrelina/fisiología , Transducción de Señal/fisiología , Sodio/metabolismo , Amilorida/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Clorotiazida/farmacología , Femenino , Ghrelina/farmacología , Proteínas Inmediatas-Precoces/fisiología , Modelos Animales , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
15.
Hypertension ; 61(5): 1021-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23509080

RESUMEN

The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética/fisiología , Angiotensina II/metabolismo , Línea Celular , Células Cultivadas , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Losartán/farmacología , Oxadiazoles/farmacología , Ésteres del Forbol/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Dopaminérgicos/metabolismo , Transcripción Genética/efectos de los fármacos
16.
Clin Chim Acta ; 421: 236-42, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23454474

RESUMEN

BACKGROUND: Salt sensitivity (SS) of blood pressure (BP) affects 25% of adults, shares comorbidity with hypertension, and has no convenient diagnostic test. We tested the hypothesis that urine-derived exfoliated renal proximal tubule cells (RPTCs) could diagnose the degree of an individual's SS of BP. METHODS: Subjects were selected who had their SS of BP determined 5 y prior to this study (salt-sensitive: ≥7 mm Hg increase in mean arterial pressure (MAP) following transition from a random weekly diet of low (10 mmol/day) to high (300 mmol/day) sodium (Na(+)) intake, N=4; inverse salt-sensitive (ISS): ≥7 mm Hg increase in MAP transitioning from a high to low Na(+) diet, N=3, and salt-resistant (SR): <7 mm Hg change in MAP transitioned on either diet, N=5). RPTC responses to 2 independent Na(+) transport pathways were measured. RESULTS: There was a negative correlation between the degree of SS and dopamine-1 receptor (D1R) plasma membrane recruitment (y=-0.0107x+0.68 relative fluorescent units (RFU), R(2)=0.88, N=12, P<0.0001) and angiotensin II-stimulated intracellular Ca(++) (y=-0.0016x+0.0336, R(2)=0.7112, P<0.001, N=10) concentration over baseline. CONCLUSIONS: Isolating RPTCs from urine provides a personalized cell-based diagnostic test of SS index that offers advantages over a 2-week controlled diet with respect to cost and patient compliance. Furthermore, the linear relationship between the change in MAP and response to 2 Na(+) regulatory pathways suggests that an individual's RPTC response to intracellular Na(+) is personalized and predictive.


Asunto(s)
Presión Arterial/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Sodio en la Dieta/farmacología , Angiotensina II/genética , Angiotensina II/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Separación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Sodio en la Dieta/metabolismo
17.
Methods Mol Biol ; 945: 329-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23097116

RESUMEN

The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células Epiteliales/citología , Túbulos Renales Proximales/citología , Adenoviridae/genética , Antígenos Transformadores de Poliomavirus/genética , Proliferación Celular , Criopreservación , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Telomerasa/genética , Transducción Genética
18.
Hypertension ; 60(2): 396-403, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710646

RESUMEN

Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.


Asunto(s)
Túbulos Renales Proximales/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Receptores Dopaminérgicos/fisiología , Transducción de Señal/fisiología , Sodio/metabolismo , Transporte Biológico/fisiología , Línea Celular , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Túbulos Renales Proximales/citología , Proteína Fosfatasa 2/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
19.
Hypertension ; 59(2): 437-45, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22203736

RESUMEN

Renal dopamine D(1)-like receptors (D(1)Rs) and angiotensin type 2 receptors (AT(2)Rs) are important natriuretic receptors counterbalancing angiotensin type 1 receptor-mediated tubular sodium reabsorption. Here we explore the mechanisms of D(1)R and AT(2)R interactions in natriuresis. In uninephrectomized, sodium-loaded Sprague-Dawley rats, direct renal interstitial infusion of the highly selective D(1)R agonist fenoldopam induced a natriuretic response that was abolished by the AT(2)R-specific antagonist PD-123319 or by microtubule polymerization inhibitor nocodazole but not by actin polymerization inhibitor cytochalasin D. By confocal microscopy and immunoelectron microscopy, fenoldopam translocated AT(2)Rs from intracellular sites to the apical plasma membranes of renal proximal tubule cells, and this translocation was abolished by nocodazole. Because D(1)R activation induces natriuresis via an adenylyl cyclase/cAMP signaling pathway, we explored whether this pathway is responsible for AT(2)R recruitment and AT(2)R-mediated natriuresis. Renal interstitial coinfusion of the adenylyl cyclase activator forskolin and 3-isobutly-1-methylxanthine induced natriuresis that was abolished either by PD-123319 or nocodazole but was unaffected by specific the D(1)R antagonist SCH-23390. Coadministration of forskolin and 3-isobutly-1-methylxanthine also translocated AT(2)Rs to the apical plasma membranes of renal proximal tubule cells; this translocation was abolished by nocodazole but was unaffected by SCH-23390. The results demonstrate that D(1)R-induced natriuresis requires AT(2)R recruitment to the apical plasma membranes of renal proximal tubule cells in a microtubule-dependent manner involving an adenylyl cyclase/cAMP signaling pathway. These studies provide novel insights regarding the mechanisms whereby renal D(1)Rs and AT(2)Rs act in concert to promote sodium excretion in vivo.


Asunto(s)
Túbulos Renales Proximales/fisiología , Microtúbulos/fisiología , Natriuresis/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Receptores de Dopamina D1/fisiología , Transducción de Señal/fisiología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , AMP Cíclico/fisiología , Femenino , Fenoldopam/farmacología , Imidazoles/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Modelos Animales , Natriuresis/efectos de los fármacos , Nocodazol/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/efectos de los fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sodio en la Dieta/farmacología , Moduladores de Tubulina/farmacología
20.
Am J Physiol Renal Physiol ; 300(4): F914-20, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21289050

RESUMEN

Renal dopamine receptor function and ion transport inhibition are impaired in essential hypertension. We recently reported that caveolin-1 (CAV1) and lipid rafts are necessary for normal D(1)-like receptor-dependent internalization of Na-K-ATPase in human proximal tubule cells. We now hypothesize that CAV1 is necessary for the regulation of urine sodium (Na(+)) excretion (U(Na)V) and mean arterial blood pressure (MAP) in vivo. Acute renal interstitial (RI) infusion into Sprague-Dawley rats of 1 µg·kg⁻¹·min⁻¹ fenoldopam (FEN; D(1)-like receptor agonist) caused a 0.46 ± 0.15-µmol/min increase in U(Na)V (over baseline of 0.29 ± 0.04 µmol/min; P < 0.01). This increase was seen in Na(+)-loaded rats, but not in those under a normal-sodium load. Coinfusion with ß-methyl cyclodextrin (ßMCD; lipid raft disrupter, 200 µg·kg⁻¹·min⁻¹) completely blocked this FEN-induced natriuresis (P < 0.001). Long-term (3 day) lipid raft disruption via continuous RI infusion of 80 µg·kg⁻¹·min⁻¹ ßMCD decreased renal cortical CAV1 expression (47.3 ± 6.4%; P < 0.01) and increased MAP (32.4 ± 6.6 mmHg; P < 0.001) compared with vehicle-infused animals. To determine whether the MAP rise was due to a CAV1-dependent lipid raft-mediated disruption, Na(+)-loaded rats were given a bolus RI infusion of CAV1 siRNA. Two days postinfusion, cortical CAV1 expression was decreased by 73.6 ± 8.2% (P < 0.001) and the animals showed an increase in MAP by 17.4 ± 2.9 mmHg (P < 0.01) compared with animals receiving scrambled control siRNA. In summary, acute kidney-specific lipid raft disruption decreases CAV1 expression and blocks D(1)-like receptor-induced natriuresis. Furthermore, chronic disruption of lipid rafts or CAV1 protein expression in the kidney induces hypertension.


Asunto(s)
Caveolina 1/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Natriuresis/fisiología , Sodio en la Dieta/metabolismo , Análisis de Varianza , Animales , Caveolina 1/genética , Femenino , Técnica del Anticuerpo Fluorescente , Hipertensión/fisiopatología , Inmunoprecipitación , Riñón/fisiopatología , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Sodio en la Dieta/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA