Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38747901

RESUMEN

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Asunto(s)
Biocatálisis , Péptidos , Péptidos/química , Péptidos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Ingeniería de Proteínas
2.
Anal Bioanal Chem ; 414(1): 385-397, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33547482

RESUMEN

Validation of analytical methods for measurements of microplastics (MP) is severely hampered because of a general lack of reference materials, RM. There is a great need to develop such reference materials. This study presents a concept of three-component kit with immobilised MP in solid NaCl, a surfactant and clean water that can be applied for the production of many types of MP RMs. As proof of concept, an RM for polyethylene terephthalate (PET) particles in water was prepared and evaluated for its homogeneity. The particles ranged from 30 µm (Feretmin) to about 200 µm adapted by wet sieving. A specific number of PET particles were immobilized in about 0.29 g of solid NaCl by freeze-drying 1 mL of a NaCl suspension. By using manual and automated counting, twenty reconstituted 1-L water samples were evaluated for homogeneity with respect to number of PET particles from 30 µm to > 200 µm/L of water. The number of particles was 730 ± 120 (mean ± one standard deviation (SD); n = 10) and 865 ± 155 particles (n = 10) obtained by optical microscopy in two independent laboratories. This corresponded to relative SDs of 16.4 and 17.9% and a mean of 797 ± 151 particles (18.9% RSD, for n = 20). Homogeneity studies of the NaCl carrier without reconstitution resulted in 794 ± 60 particles (7.5% RSD). The homogeneity of PET in the salt carrier was also evaluated directly with respect to mass of PET per vial using an ultra-micro balance. An average mass of 293 ± 41 µg of PET was obtained (14, % RSD for n = 14). Micrographs were recorded to demonstrate the absence of major sources of contamination of the RM components. Information about the particle size distribution and particle shapes was obtained by laser diffraction (LD) and dynamic image analysis (DIA). In addition, the identity of the PET polymer was confirmed by Raman and FT-IR spectroscopy. The RM was developed for a large-scale inter-laboratory comparison of PET particles in water (ILC). Based on the homogeneity results, the material was found to be sufficiently homogeneous to be of meaningful use in the ILC. In a 3-day process, more than 500 samples of PET particles in the NaCl carrier were prepared with good potential for further upscaling with respect to the number of vials or with other kinds of polymers. The stability of PET was not evaluated but it was deemed to be stable for the duration of the ILC.

3.
ACS Nano ; 14(2): 1665-1681, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31922724

RESUMEN

Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.


Asunto(s)
Células Endoteliales/química , Macrófagos/química , Nanopartículas/metabolismo , Dióxido de Silicio/metabolismo , Animales , Células Endoteliales/metabolismo , Cinética , Macrófagos/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Factores de Tiempo , Pez Cebra/embriología
4.
Chemosphere ; 238: 124588, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31545210

RESUMEN

Few works have addressed the effects provoked by the exposure to cadmium containing nanoparticles (NPs) on adult zebrafish (Danio rerio). We studied the effects of CdS NPs (5 nm) or ionic cadmium (10 µg Cd/L) after 3 and 21 d of exposure and at 6 months post-exposure (mpe). Acute toxicity was recorded after exposure to both forms of cadmium. Significant cadmium accumulation was measured in the whole fish after both treatments and autometallography showed a higher accumulation of metal in the intestine than that in the liver. Histopathological alterations, such as inflammation in gills and vacuolization in the liver, were detected after the exposure to both cadmium forms and, in a lower extent, at 6 mpe. X-ray analysis proved the presence of CdS NPs in these organs. The hepatic transcriptome analysis revealed that gene ontology terms such as "immune response" or "actin binding" were over-represented after 21 d of exposure to ionic cadmium respect to CdS NPs treatment. Exposure to CdS NPs caused a significant effect on pathways involved in the immune response and oxidative stress, while the exposure to ionic cadmium affected significantly pathways involved in DNA damage and repair and in the energetic metabolism. Oxidative damage to liver proteins was detected after the exposure to ionic cadmium, while a stronger destabilization of the hepatocyte lysosomal membrane was recorded under exposure to CdS NPs. In summary, although ionic cadmium provoked stronger effects than CdS NPs, both cadmium forms exerted an array of lethal and sublethal effects to zebrafish.


Asunto(s)
Bioacumulación/fisiología , Compuestos de Cadmio/toxicidad , Cadmio/toxicidad , Sulfuros/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Branquias/metabolismo , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos
5.
Sci Data ; 6(1): 46, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048742

RESUMEN

The large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e. one measurement per well) with optical plate-readers. We present here a dataset including data based on a maximum of 14 different read outs (including viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential and steatosis) of the human hepatoma HepaRG cell line treated with a large set of nanomaterials, coatings and supernatants at different concentrations. The database, given its size, can be utilized in the development of in silico hazard assessment and prediction tools or can be combined with toxicity results from other in vitro test systems.


Asunto(s)
Bases de Datos Factuales , Nanoestructuras/toxicidad , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Recuento de Células , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Hepáticas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos
6.
Arch Toxicol ; 92(2): 633-649, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29119250

RESUMEN

Manufactured nanomaterials (MNMs) selected from a library of over 120 different MNMs with varied compositions, sizes, and surface coatings were tested by four different laboratories for toxicity by high-throughput/-content (HT/C) techniques. The selected particles comprise 14 MNMs composed of CeO2, Ag, TiO2, ZnO and SiO2 with different coatings and surface characteristics at varying concentrations. The MNMs were tested in different mammalian cell lines at concentrations between 0.5 and 250 µg/mL to link physical-chemical properties to multiple adverse effects. The cell lines are derived from relevant organs such as liver, lung, colon and the immune system. Endpoints such as viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential, lysosomal acidification and steatosis have been studied. Soluble MNMs, Ag and ZnO, were toxic in all cell types. TiO2 and SiO2 MNMs also triggered toxicity in some, but not all, cell types and the cell type-specific effects were influenced by the specific coating and surface modification. CeO2 MNMs were nearly ineffective in our test systems. Differentiated liver cells appear to be most sensitive to MNMs, Whereas most of the investigated MNMs showed no acute toxicity, it became clear that some show adverse effects dependent on the assay and cell line. Hence, it is advised that future nanosafety studies utilise a multi-parametric approach such as HT/C screening to avoid missing signs of toxicity. Furthermore, some of the cell type-specific effects should be followed up in more detail and might also provide an incentive to address potential adverse effects in vivo in the relevant organ.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microscopía , Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos , Células A549 , Animales , Relación Dosis-Respuesta a Droga , Células HCT116 , Células Hep G2 , Humanos , Nanopartículas del Metal/toxicidad , Ratones , Células RAW 264.7
7.
Int J Pharm ; 523(1): 320-326, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28342788

RESUMEN

Analytical ultracentrifugation (AUC) is a powerful tool for the study of particle size distributions and interactions with high accuracy and resolution. In this work, we show how the analysis of sedimentation velocity data from the AUC can be used to characterize nanocarrier drug delivery systems used in nanomedicine. Nanocarrier size distribution and the ratio of free versus nanoparticle-encapsulated drug in a commercially available liposomal doxorubicin formulation are determined using interference and absorbance based AUC measurements and compared with results generated with conventional techniques. Additionally, the potential of AUC in measuring particle density and the detection of nanocarrier sub-populations is discussed as well. The unique capability of AUC in providing reliable data for size and composition in a single measurement and without complex sample preparation makes this characterization technique a promising tool both in nanomedicine product development and quality control.


Asunto(s)
Antibióticos Antineoplásicos/análisis , Doxorrubicina/análogos & derivados , Doxorrubicina/análisis , Nanomedicina , Tamaño de la Partícula , Polietilenglicoles/análisis , Ultracentrifugación
8.
ACS Appl Mater Interfaces ; 8(7): 4838-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26779668

RESUMEN

The following work presents a simple, reliable and scalable seeding-growth methodology to prepare silica nanoparticles (SiO2 NPs) (20, 30, 50 and 80 nm) directly in aqueous phase, both as plain- as well as fluorescent-labeled silica. The amount of fluorescent label per particle remained constant regardless of size, which facilitates measurements in terms of number-based concentrations. SiO2 NPs in dispersion were functionalized with an epoxysilane, thus providing a flexible platform for the covalent linkage of wide variety of molecules under mild experimental conditions. This approach was validated with ethylenediamine, two different amino acids and three akylamines to generate a variety of surface modifications. Accurate characterization of particle size, size distributions, morphology and surface chemistry is provided, both for as-synthesized particles and after incubation in cell culture medium. The impact of physicochemical properties of SiO2 NPs was investigated with human alveolar basal epithelial cells (A549) such as the effect in cytotoxicity, cell internalization and membrane interaction.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular , Medios de Cultivo/química , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Humanos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Dióxido de Silicio/administración & dosificación , Propiedades de Superficie
9.
Toxicol In Vitro ; 31: 137-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26571344

RESUMEN

The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.


Asunto(s)
Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Titanio/toxicidad , Animales , Células 3T3 BALB , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Pruebas de Micronúcleos , Microscopía Electrónica de Transmisión , Mutágenos/química , Titanio/química , Titanio/farmacología
10.
Environ Toxicol Chem ; 34(7): 1659-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25772261

RESUMEN

Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.


Asunto(s)
Bivalvos/efectos de los fármacos , Compuestos de Cadmio/química , Estrés Oxidativo/efectos de los fármacos , Puntos Cuánticos/toxicidad , Sulfuros/química , Contaminantes Químicos del Agua/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Bivalvos/enzimología , Bivalvos/metabolismo , Cadmio/análisis , Cadmio/toxicidad , Catalasa/metabolismo , Glutatión Transferasa/metabolismo , Movimiento/efectos de los fármacos , Puntos Cuánticos/química , Agua de Mar/química
11.
Toxicol Lett ; 233(2): 187-99, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25523186

RESUMEN

Higher efficacy and safety of nano gold therapeutics require examination of cellular responses to gold nanoparticles (AuNPs). In this work we compared cellular uptake, cytotoxicity and RNA expression patterns induced in Caco-2 cells exposed to AuNP (5 and 30nm). Cellular internalization was dose and time-dependent for both AuNPs. The toxicity was observed by colony forming efficiency (CFE) and not by Trypan blue assay, and exclusively for 5nm AuNPs, starting at the concentration of 200µM (24 and 72h of exposure). The most pronounced changes in gene expression (Agilent microarrays) were detected at 72h (300µM) of exposure to AuNPs (5nm). The biological processes affected by smaller AuNPs were: RNA/zinc ion/transition metal ion binding (decreased), cadmium/copper ion binding and glutathione metabolism (increased). Some Nrf2 responsive genes (several metallothioneins, HMOX, G6PD, OSGIN1 and GPX2) were highly up regulated. Members of the selenoproteins were also differentially expressed. Our findings indicate that exposure to high concentration of AuNPs (5nm) induces metal exposure, oxidative stress signaling pathways, and might influence selenium homeostasis. Some of detected cellular responses might be explored as potential enhancers of anti-cancer properties of AuNPs based nanomedicines.


Asunto(s)
Células CACO-2/efectos de los fármacos , Oro/toxicidad , Nanopartículas/toxicidad , Transcriptoma/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oro/metabolismo , Humanos , Análisis por Micromatrices , Nanopartículas/metabolismo , Tamaño de la Partícula
12.
Anal Bioanal Chem ; 406(26): 6629-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25168112

RESUMEN

A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further conclusions on their potential impact on health.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Oro/química , Nanopartículas/química , Compuestos Orgánicos/aislamiento & purificación , Dióxido de Silicio/química , Microextracción en Fase Sólida/métodos , Adsorción , Propiedades de Superficie
13.
Int J Nanomedicine ; 9: 2191-204, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24855356

RESUMEN

Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.


Asunto(s)
Aneugénicos/farmacología , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/fisiología , Oro/farmacología , Macrófagos/fisiología , Nanopartículas del Metal/administración & dosificación , Oxidación-Reducción/efectos de los fármacos , Aneuploidia , Animales , Humanos , Macrófagos/efectos de los fármacos , Ensayo de Materiales , Ratones , Tamaño de la Partícula
14.
Chemosphere ; 100: 63-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24480429

RESUMEN

Cadmium sulfide (CdS) quantum dots are widely used in medical imaging. The aim of this study was to examine toxicity effects of CdS engineered nanoparticles (CdS NPs) compared to soluble Cd, on marine ragworms (Hediste diversicolor) exposed for 14 d to these contaminants (10 µg Cd L(-1)) in seawater or via their food (contaminated worm tissue). In our experimental media, Dynamic Light Scattering studies showed that the majority of CdS remained in the nanoscale (1-10 nm) with the exception of few aggregates (100-300 nm). Labile Cd fractions released from CdS NPs were estimated by diffusive gradient in thin films, showing that about 50% of CdS NPs remained in nanoparticulate form. Ragworms accumulated Cd in both soluble Cd and CdS NPs in waterborne exposures only. Greater significant changes of biochemical responses were observed in worms exposed to CdS NPs in seawater compared to contaminated food. Catalase and glutathione-S-transferase activities were the most sensitive biochemical biomarkers responding to both Cd treatments for waterborne exposure. Inductions of CAT were higher in diet-exposed worms to Cd as NPs vs soluble form suggesting a specific "nano" effect. Caspase activities increased in worms exposed to soluble Cd and Cd NPs for the two routes of exposure compared to controls. Defences, may be insufficient to prevent reactive oxygen species generation and the associated apoptosis. Behaviour of invertebrates inside sediment showed impairments of body movements in worms exposed to CdS NPs. This study points out oxidative processes as the main consequences of exposure to Cd based NPs in worms.


Asunto(s)
Conducta Animal/efectos de los fármacos , Compuestos de Cadmio/química , Compuestos de Cadmio/toxicidad , Dieta/veterinaria , Poliquetos/efectos de los fármacos , Puntos Cuánticos , Agua de Mar/química , Sulfuros/química , Sulfuros/toxicidad , Animales , Biomarcadores/metabolismo , Poliquetos/metabolismo , Solubilidad
15.
Toxicol Lett ; 224(1): 84-92, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24140553

RESUMEN

We report here an in vitro evaluation of silica nanoparticle uptake by lung epithelial cells (A549), the cytotoxic effect of the particles and we propose autophagy as possible survival strategy. The effect of surface charge, serum proteins and the influence of inhibitors on the uptake of 20 nm monodispersed nanoparticles with various functional groups are discussed. Uptake rate of the particles with various functional groups is demonstrated to be similar in the presence of serum proteins, while the uptake rate ranking is COOH>NH2>OH under serum free conditions. Our results suggest an actin-dependent, macropinocytotic uptake process that was also confirmed by scanning and transmission electron microscopy. In spite of the intensive active uptake, significant cytotoxic effect is detected only at relatively high concentrations (above 250 µg/mL). Blebbing of the cell surface is observed already at 5h of exposure and is shown to be related to autophagy rather than apoptotic cell death. The A549 cells display elevated levels of autophagosomes, however they do not express typical apoptosis markers such as increased amount of active caspase-3 and release of mitochondrial cytochrome C. Based on these results, we propose here an autophagic activity and cross-talk between autophagic and apoptotic pathways as a mechanism allowing the survival of A549 cells under exposure to silica nanoparticles.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Dióxido de Silicio/farmacocinética
16.
Nanotoxicology ; 7(2): 221-33, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22279961

RESUMEN

In this work we investigated the toxicological effects of nude and chemically functionalised (-NH(2), -OH and -COOH groups) multiwall carbon nanotubes (mwCNTs) using immortalised mouse fibroblasts cell line (Balb/3T3) as in vitro model, alternative to the use of animals, to assess basal cytotoxicity, carcinogenic potential, genotoxicity and cell interaction of nanomaterials (NM). Combining in vitro tests such as cell transformation assay and micronucleus with physicochemical and topological analysis, we obtained results showing no cytotoxicity and genotoxicity. Carcinogenic potential and mwCNTs interaction with cells were instead evident. We stressed the importance that different toxicological end points have to be considered when studying NM, therefore, assays able to detect long-term effects, such as carcinogenicity, must be taken into account together with a panel of tests able to detect more immediate effects like basal cytotoxicity or genotoxicity.


Asunto(s)
Carcinógenos/toxicidad , Forma de la Célula/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Nanotubos de Carbono/toxicidad , Alternativas a las Pruebas en Animales , Animales , Células 3T3 BALB , Pruebas de Carcinogenicidad , Transformación Celular Neoplásica/patología , Relación Dosis-Respuesta a Droga , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Medición de Riesgo , Factores de Tiempo
17.
Nanotoxicology ; 7(6): 1095-110, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22769972

RESUMEN

An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cytokine and oxidative stress. A high release of TNF-α and IL-8 by epithelial/endothelial cells, potentiated in the presence of THP-1 cells could contribute to the observed downregulation of surfactant proteins A mRNA expression resulting in the damage of the alveolar barrier. The obtained results suggested that in vitro approach can be used to study pulmonary toxicity as long as the applied in vitro model mimics closely the complexity of in vivo situation.


Asunto(s)
Citocinas/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Dióxido de Silicio/toxicidad , Línea Celular , Supervivencia Celular , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Lipopolisacáridos , Macrófagos/fisiología , Monocitos/fisiología , Nanopartículas/química , Proteína A Asociada a Surfactante Pulmonar/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno , Dióxido de Silicio/química
18.
Small ; 9(3): 472-7, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23112137

RESUMEN

Interleukin 1 beta (IL-1ß)-dependent inflammatory disorders, such as rheumatoid arthritis and psoriasis, pose a serious medical burden worldwide, where patients face a lifetime of illness and treatment. Organogold compounds have been used since the 1930s to treat rheumatic and other IL-1ß-dependent diseases and, though their mechanisms of action are still unclear, there is evidence that gold interferes with the transmission of inflammatory signalling. Here we show for the first time that citrate-stabilized gold nanoparticles, in a size dependent manner, specifically downregulate cellular responses induced by IL-1ß both in vitro and in vivo. Our results indicate that the anti-inflammatory activity of gold nanoparticles is associated with an extracellular interaction with IL-1ß, thus opening potentially novel options for further therapeutic applications.


Asunto(s)
Oro/química , Interleucina-1beta/farmacología , Nanopartículas del Metal/química , Animales , Western Blotting , Caspasa 1/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
19.
Mutat Res ; 745(1-2): 11-20, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22094287

RESUMEN

Although amorphous silica nanoparticles (aSiO(2)NPs) are believed to be non-toxic and are currently used in several industrial and biomedical applications including cosmetics, food additives and drug delivery systems, there is still no conclusive information on their cytotoxic, genotoxic and carcinogenic potential. For this reason, this work has investigated the effects of aSiO(2)NPs on Balb/3T3 mouse fibroblasts, focusing on cytotoxicity, cell transformation and genotoxicity. Results obtained using aSiO(2)NPs, with diameters between 15 nm and 300 nm and exposure times up to 72 h, have not shown any cytotoxic effect on Balb/3T3 cells as measured by the MTT test and the Colony Forming Efficiency (CFE) assay. Furthermore, aSiO(2)NPs have induced no morphological transformation in Balb/3T3 cells and have not resulted in genotoxicity, as shown by Cell Transformation Assay (CTA) and Micronucleus (MN) assay, respectively. To understand whether the absence of any toxic effect could result from a lack of internalization of the aSiO(2)NPs by Balb/3T3 cells, we have investigated the uptake and the intracellular distribution following exposure to 85 nm fluorescently-labelled aSiO(2)NPs. Using fluorescence microscopy, it was observed that fluorescent aSiO(2)NPs are internalized and located exclusively in the cytoplasmic region. In conclusion, we have demonstrated that although aSiO(2)NPs are internalized in vitro by Balb/3T3 mouse fibroblasts, they do not trigger any cytotoxic or genotoxic effect and do not induce morphological transformation, suggesting that they might be a useful component in industrial applications.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Células 3T3 BALB , Ensayo de Unidades Formadoras de Colonias , Fibroblastos/efectos de los fármacos , Ratones , Pruebas de Micronúcleos , Óxidos/toxicidad , Compuestos de Plata/toxicidad
20.
Nano Lett ; 11(10): 4480-4, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21932791

RESUMEN

We measure the structural and stability changes of proteins at nanomolar concentration upon interaction with nanoparticles. Using synchrotron radiation circular dichroism (SRCD), we measure a decrease of 6 °C in the thermal unfolding of human serum albumin upon interaction with silver nanoparticles while this does not happen with gold. The use of SRCD allows measuring critical parameters on protein-nanoparticle interactions, and it will provide experimental data on the relative stability of key biological proteins for nanotoxicology.


Asunto(s)
Dicroismo Circular , Nanopartículas del Metal , Proteínas/química , Sincrotrones , Estructura Secundaria de Proteína , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA