Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667288

RESUMEN

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Asunto(s)
Piperazinas , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Animales , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Metástasis de la Neoplasia , Nitrilos/farmacología , Modelos Animales de Enfermedad , Benzamidas/farmacología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico
3.
Clin Cancer Res ; 30(8): 1518-1529, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493804

RESUMEN

PURPOSE: The current approach for molecular subtyping of colon cancer relies on gene expression profiling, which is invasive and has limited ability to reveal dynamics and spatial heterogeneity. Molecular imaging techniques, such as PET, present a noninvasive alternative for visualizing biological information from tumors. However, the factors influencing PET imaging phenotype, the suitable PET radiotracers for differentiating tumor subtypes, and the relationship between PET phenotypes and tumor genotype or gene expression-based subtyping remain unknown. EXPERIMENTAL DESIGN: In this study, we conducted 126 PET scans using four different metabolic PET tracers, [18F]fluorodeoxy-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET), 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), and [11C]acetate ([11C]ACE), using a spectrum of five preclinical colon cancer models with varying genetics (BMT, AKPN, AK, AKPT, KPN), at three sites (subcutaneous, orthograft, autochthonous) and at two tumor stages (primary vs. metastatic). RESULTS: The results demonstrate that imaging signatures are influenced by genotype, tumor environment, and stage. PET imaging signatures exhibited significant heterogeneity, with each cancer model displaying distinct radiotracer profiles. Oncogenic Kras and Apc loss showed the most distinctive imaging features, with [18F]FLT and [18F]FET being particularly effective, respectively. The tissue environment notably impacted [18F]FDG uptake, and in a metastatic model, [18F]FET demonstrated higher uptake. CONCLUSIONS: By examining factors contributing to PET-imaging phenotype, this study establishes the feasibility of noninvasive molecular stratification using multiplex radiotracer PET. It lays the foundation for further exploration of PET-based subtyping in human cancer, thereby facilitating noninvasive molecular diagnosis.


Asunto(s)
Neoplasias del Colon , Fluorodesoxiglucosa F18 , Humanos , Didesoxinucleósidos , Tomografía de Emisión de Positrones/métodos , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/genética , Radiofármacos
4.
Nat Genet ; 56(3): 458-472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351382

RESUMEN

Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Pronóstico , Diferenciación Celular/genética , Fenotipo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica
5.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358352

RESUMEN

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Asunto(s)
Neoplasias Colorrectales , Neutrófilos , Animales , Ratones , Humanos , Recurrencia Local de Neoplasia/metabolismo , Transducción de Señal/genética , Neoplasias Colorrectales/genética , Análisis de la Célula Individual
6.
Nat Commun ; 15(1): 100, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168062

RESUMEN

Oncogenic KRAS mutations are well-described functionally and are known to drive tumorigenesis. Recent reports describe a significant prevalence of KRAS allelic imbalances or gene dosage changes in human cancers, including loss of the wild-type allele in KRAS mutant cancers. However, the role of wild-type KRAS in tumorigenesis and therapeutic response remains elusive. We report an in vivo murine model of colorectal cancer featuring deletion of wild-type Kras in the context of oncogenic Kras. Deletion of wild-type Kras exacerbates oncogenic KRAS signalling through MAPK and thus drives tumour initiation. Absence of wild-type Kras potentiates the oncogenic effect of KRASG12D, while incidentally inducing sensitivity to inhibition of MEK1/2. Importantly, loss of the wild-type allele in aggressive models of KRASG12D-driven CRC significantly alters tumour progression, and suppresses metastasis through modulation of the immune microenvironment. This study highlights the critical role for wild-type Kras upon tumour initiation, progression and therapeutic response in Kras mutant CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Desequilibrio Alélico , Genes ras , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Microambiente Tumoral/genética
7.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37580540

RESUMEN

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Asunto(s)
Neoplasias Colorrectales , Animales , Humanos , Ratones , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Metabolómica , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
Cancer Immunol Res ; 11(8): 1137-1155, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37309673

RESUMEN

Intraepithelial lymphocytes (IEL) expressing γδ T-cell receptors (γδTCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immunosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic γδIELs. In contrast with healthy intestinal or colonic tissue, we found that γδIELs were largely absent from the microenvironment of both mouse and human tumors, and that butyrophilin-like (BTNL) molecules, which can critically regulate γδIEL through direct γδTCR interactions, were also downregulated in tumors. We then demonstrated that ß-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased γδIEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of ß-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant ß-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and γδ T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts γδIEL immunosurveillance and furthers cancer progression.


Asunto(s)
Neoplasias del Colon , Linfocitos Intraepiteliales , Ratones , Animales , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linfocitos Intraepiteliales/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Neoplasias del Colon/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Microambiente Tumoral
10.
Br J Cancer ; 128(7): 1333-1343, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717674

RESUMEN

BACKGROUND: Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue. METHODS: Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n = 577) and mouse (n = 57 across n = 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers. RESULTS: We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours. CONCLUSIONS: When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC subtype for their experimental testing.


Asunto(s)
Neoplasias Colorrectales , Humanos , Animales , Ratones , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Transducción de Señal
11.
Nat Commun ; 13(1): 7551, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477656

RESUMEN

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Asunto(s)
Apoptosis , Factor de Crecimiento Transformador beta , Humanos , Apoptosis/genética
13.
Cell Stem Cell ; 29(8): 1213-1228.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931031

RESUMEN

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.


Asunto(s)
Neoplasias Colorrectales , Mucosa Intestinal , Animales , Neoplasias Colorrectales/patología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Células Madre Neoplásicas/patología , Receptores Acoplados a Proteínas G/metabolismo
14.
Gut ; 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477863

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

15.
Nat Commun ; 12(1): 3464, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103493

RESUMEN

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFß signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFß-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFß-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/patología , Diferenciación Celular , Supervivencia Celular , Colon/patología , Neoplasias del Colon/genética , Células Epiteliales/metabolismo , Feto/patología , Inflamación/patología , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Mutación , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteínas Señalizadoras YAP
16.
Nature ; 594(7863): 430-435, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079124

RESUMEN

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Asunto(s)
Competencia Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Esterasas/metabolismo , Genes APC , Mutación , Adenoma/genética , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Competencia Celular/genética , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Medios de Cultivo Condicionados , Progresión de la Enfermedad , Esterasas/antagonistas & inhibidores , Esterasas/genética , Femenino , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Organoides/citología , Organoides/metabolismo , Organoides/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
17.
Nat Genet ; 53(1): 16-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414552

RESUMEN

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Regiones no Traducidas 5'/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Carcinogénesis/patología , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Estimación de Kaplan-Meier , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Metástasis de la Neoplasia , Oncogenes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
18.
Nat Commun ; 12(1): 241, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431824

RESUMEN

Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de Ciclo Celular/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Terapia Molecular Dirigida , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Crisis Blástica/patología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia Mieloide Aguda/genética , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/antagonistas & inhibidores
19.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33328217

RESUMEN

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Neoplasias Colorrectales/genética , Factor 4E Eucariótico de Iniciación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Inhibidores mTOR/farmacología , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Animales , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Gastroenterology ; 159(1): 183-199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179094

RESUMEN

BACKGROUND & AIMS: Intestinal epithelial homeostasis depends on a tightly regulated balance between intestinal epithelial cell (IEC) death and proliferation. While the disruption of several IEC death regulating factors result in intestinal inflammation, the loss of the anti-apoptotic BCL2 family members BCL2 and BCL2L1 has no effect on intestinal homeostasis in mice. We investigated the functions of the antiapoptotic protein MCL1, another member of the BCL2 family, in intestinal homeostasis in mice. METHODS: We generated mice with IEC-specific disruption of Mcl1 (Mcl1ΔIEC mice) or tamoxifen-inducible IEC-specific disruption of Mcl1 (i-Mcl1ΔIEC mice); these mice and mice with full-length Mcl1 (controls) were raised under normal or germ-free conditions. Mice were analyzed by endoscopy and for intestinal epithelial barrier permeability. Intestinal tissues were analyzed by histology, in situ hybridization, proliferation assays, and immunoblots. Levels of calprotectin, a marker of intestinal inflammation, were measured in intestinal tissues and feces. RESULTS: Mcl1ΔIEC mice spontaneously developed apoptotic enterocolopathy, characterized by increased IEC apoptosis, hyperproliferative crypts, epithelial barrier dysfunction, and chronic inflammation. Loss of MCL1 retained intestinal crypts in a hyperproliferated state and prevented the differentiation of intestinal stem cells. Proliferation of intestinal stem cells in MCL1-deficient mice required WNT signaling and was associated with DNA damage accumulation. By 1 year of age, Mcl1ΔIEC mice developed intestinal tumors with morphologic and genetic features of human adenomas and carcinomas. Germ-free housing of Mcl1ΔIEC mice reduced markers of microbiota-induced intestinal inflammation but not tumor development. CONCLUSION: The antiapoptotic protein MCL1, a member of the BCL2 family, is required for maintenance of intestinal homeostasis and prevention of carcinogenesis in mice. Loss of MCL1 results in development of intestinal carcinomas, even under germ-free conditions, and therefore does not involve microbe-induced chronic inflammation. Mcl1ΔIEC mice might be used to study apoptotic enterocolopathy and inflammatory bowel diseases.


Asunto(s)
Carcinoma/patología , Mucosa Intestinal/patología , Neoplasias Intestinales/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Animales , Apoptosis/genética , Apoptosis/inmunología , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma/diagnóstico , Carcinoma/genética , Modelos Animales de Enfermedad , Endoscopía , Células Epiteliales/patología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/diagnóstico por imagen , Neoplasias Intestinales/diagnóstico , Neoplasias Intestinales/genética , Ratones , Ratones Transgénicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA